Collaborative Research: Constraining the tempo and dynamics of Cambrian Earth systems in western Laurentia

Project: Research

Project Details

Description

Rocks from the Cambrian Period (539-485 million years ago) contain fossils that reveal the first diversification of animals on Earth. The timing, causes, and impacts of this 'Cambrian Explosion' are poorly understood. Yet clues to understanding this event are buried in Cambrian strata that formed as oceans flooded the world's continents, and coastal environments blanketed the landscape with vast swaths of sand, mud, and fossils. One of the best-preserved records of these events is in the bottom of the Grand Canyon—in a package of sedimentary rocks known as the Tonto Group. Although the Tonto Group has been studied for nearly 150 years, the availability of new techniques makes it time to revisit these classic exposures. This project will decipher how, when, and why these rocks were deposited, and lead to greater understanding of the Cambrian Explosion of life on Earth. The broader impacts of this research include mentoring a suite of post-doctoral, graduate, and undergraduate scholars, including recruiting and training Hispanic and Native American students. Impacts also include outreach and distance learning through the Denver Museum of Nature and Science, to help this research inspire younger audiences, including 4th-12th graders in rural, first-generation, first-nation, inner-city, and culturally diverse settings. Finally, this project will reach many of the six million annual visitors to Grand Canyon National Park through Park programs, exhibits, media, and NSF-sponsored field forums on Grand Canyon geology.

Cambrian rocks record dramatic changes in Earth systems including atmospheric oxygenation events, large magnitude perturbations to the carbon cycle, and the punctuated evolution of animal life. These events played out within the global transgressive inundation of continents by advancing oceans that deposited sheet sands, muds, and carbonates. Underpinning the research plan is a novel, integrative approach to calibrating the timing and tempo of this marine transgression. This approach combines: a) radioisotopic dating of the youngest, penecontemporaneously deposited zircon crystals, which are hidden amidst the detritus making up these sedimentary rocks; b) identifying changes in the types of fossils in the same rocks, and; c) documenting changes in mineral, chemical, and physical signatures of these rocks that record simultaneous, related changes in the Cambrian Earth system—such as changes in sea level or the collision and breakup of continents. Initial work has shown that the Tonto Group of the Grand Canyon is tens of millions of years younger than previously thought, that seas flooded North America relatively quickly, and that other continental margins experienced the same event. The project will expand upon a pilot study that was conducted in the Grand Canyon, and augment it with contemporaneous strata throughout the western U.S. to test hypotheses about how these flooding episodes relate to global biologic, tectonic, and geophysical events and processes.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

StatusFinished
Effective start/end date1/08/2031/07/23

Funding

  • National Science Foundation: $262,770.00

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.