Project Details
Description
TECHNICAL: Magnetic-field-induced twinning is responsible for the high magnetoplastic strains achievable in monocrystalline Ni-Mn-Ga. By contrast, polycrystalline Ni-Mn-Ga shows no magnetoplasticity because twinning is inhibited by internal incompatibility stresses developed between adjacent grains. The PIs recently discovered that porosity, because it reduces internal stresses, allows limited twinning to occur in polycrystalline Ni-Mn-Ga foams, resulting in magnetoplastic strains. Then, designing the foam architecture and grain microstructure will allow tuning continuously the magnetoplastic strain of these foams between those of a polycrystal (~0%) and a single crystal (~10%). In this basic study, PIs will develop a fundamental understanding of how foam architecture and grain microstructure enable magnetic-field-induced strains in polycrystalline magnetic shape-memory alloys, leading to experimentally-validated models that can quantitatively predict the magnitude of magnetoplastic strain for a given foam structure. To achieve this goal, fundamental experimental and theoretical studies of the mechanisms responsible for magnetoplasticity in the individual struts of foams will be carried out. The foam architecture will be varied, in terms of node and strut volume fraction as well as strut size and aspect ratio, by using two foam manufacturing methods (casting and powder metallurgy). The foam grain size and texture will be tailored: the ratio of grain to strut diameter will be varied from much smaller than unity (polycrystalline microstructure) to comparable to unity (bamboo microstructure), and the texture will be varied from random to strong fiber texture. Finally, the magneto-mechanical properties of the resulting foams will be characterized and numerically modeled on two length scales: at a shorter length scale, models based on dislocation-dislocation and dislocation-interface interactions will be developed to predict the effect of free surfaces on the constitutive behavior of Ni-Mn-Ga in small volumes; at larger length scale, finite-element models (FEM) will be created to predict, based on the constitutive behavior, the overall foam magneto-mechanical behavior. NON-TECHNICAL: The novel magnetic shape-memory foams, produced by the PIs in preliminary research, exhibit strains and response times comparable to Terfenol D, the best commercial magnetostrictive material, and are expected to show further improvements based on these fundamental study. As compared to Terfenol D, Ni-Mn-Ga foams have lower density and contain less expensive metals, and may thus grow rapidly in industrial importance, thus having a transformative effect on various sensor and actuator technologies. Also, while the present research will focus on Ni-Mn-Ga, the mechanisms studied are general in nature, and will thus apply to all other magnetic shape-memory alloys. Beyond sensor and actuator applications, the open foam porosity may enable new applications such as (i) micropumps without moving parts where fluids are displaced by magnetically deforming pores, or (ii) efficient magnetic cooling devices with high heat-transfer rates due to the large specific areas of foams. Finally, this project will educate two graduate students and several undergraduate students, whose recruitment will emphasize women and minorities. Beside research, the students will participate in various outreach activities using the shape-memory materials to introduce materials science and technology to young women, minorities, and grade school (K-12) students. The PIs have submitted a provisional patent and intend to pursue industrial applications which is key for transitioning the field to the US high-technology industry.
Status | Finished |
---|---|
Effective start/end date | 1/05/08 → 30/04/12 |
Funding
- National Science Foundation: $336,000.00