TY - GEN
T1 - A Few Shot Transfer Learning Approach Identifying Private Images with Fast User Personalization
AU - Serra, Edoardo
AU - Ayyapureddi, Sujeet
AU - Ratul, Qudrat E.Alahy
AU - Squicciarini, Anna C.
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - As online image sharing has become commonplace, researchers have acknowledged the need to assist users in detecting sensitive (or private) images. However, image privacy classification tasks have shown to be nontrivial, as the designation of an image sensitivity requires considerations of the visual concepts in the image. In this paper, we propose an innovative framework that combines the power of knowledge transfer for efficient, personalized learning of individuals' privacy preferences toward images.Our approach defines a meta-model, which, given the query image and a small set of labeled images (used for the user-privacy customization), identifies if the query image is private for a target user. A generic user can efficiently customize this model by providing a small labeled training set. Moreover, our proposed framework includes transfer learning techniques to import basic patterns for image processing learned from other domains. Transfer learning enables fast and accurate processing of images, and allows few shot learning to focus on customization. This helps speed up the training process and avoid risk of overfitting. Our proposed framework significantly outperforms several baselines, including advanced object-oriented approaches and other CNN-based methods.
AB - As online image sharing has become commonplace, researchers have acknowledged the need to assist users in detecting sensitive (or private) images. However, image privacy classification tasks have shown to be nontrivial, as the designation of an image sensitivity requires considerations of the visual concepts in the image. In this paper, we propose an innovative framework that combines the power of knowledge transfer for efficient, personalized learning of individuals' privacy preferences toward images.Our approach defines a meta-model, which, given the query image and a small set of labeled images (used for the user-privacy customization), identifies if the query image is private for a target user. A generic user can efficiently customize this model by providing a small labeled training set. Moreover, our proposed framework includes transfer learning techniques to import basic patterns for image processing learned from other domains. Transfer learning enables fast and accurate processing of images, and allows few shot learning to focus on customization. This helps speed up the training process and avoid risk of overfitting. Our proposed framework significantly outperforms several baselines, including advanced object-oriented approaches and other CNN-based methods.
KW - privacy
KW - sensitivity
KW - social networking (online)
KW - systematics
KW - training
KW - visualization
UR - https://scholarworks.boisestate.edu/cs_facpubs/321
UR - https://doi.org/10.1109/BigData52589.2021.9671755
U2 - 10.1109/BigData52589.2021.9671755
DO - 10.1109/BigData52589.2021.9671755
M3 - Conference contribution
T3 - Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
SP - 1204
EP - 1213
BT - Proceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
A2 - Chen, Yixin
A2 - Ludwig, Heiko
A2 - Tu, Yicheng
A2 - Fayyad, Usama
A2 - Zhu, Xingquan
A2 - Hu, Xiaohua Tony
A2 - Byna, Suren
A2 - Liu, Xiong
A2 - Zhang, Jianping
A2 - Pan, Shirui
A2 - Papalexakis, Vagelis
A2 - Wang, Jianwu
A2 - Cuzzocrea, Alfredo
A2 - Ordonez, Carlos
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE International Conference on Big Data, Big Data 2021
Y2 - 15 December 2021 through 18 December 2021
ER -