TY - GEN
T1 - A Novel Method to Enable Transfer Learning of Structural Graph Representations
AU - Layne, Janet
AU - Serra, Edoardo
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Graph Representation Learning (GRL) methods which effectively capture a node's neighborhood structure in their representations can show excellent performance on important machine learning tasks such as node and graph classification. Recent work has focused on scaling GRL to massive graphs, but existing methods are transductive (must be re-trained for unseen nodes) and are often geared to learn proximity rather than node structure. Graph Neural Network methods can learn structure, but are often supervised, prone to learn proximity, and do not scale well for massive graphs. Transfer learning has the potential to enable scaling to massive graphs, while preventing overfitting, and creating universal models for use on a wide variety of datasets. We propose a novel method that enables transfer learning. Our model performs better at tasks which require capture of nodes' structural information and scales as well as the current state of the art to very large graphs.
AB - Graph Representation Learning (GRL) methods which effectively capture a node's neighborhood structure in their representations can show excellent performance on important machine learning tasks such as node and graph classification. Recent work has focused on scaling GRL to massive graphs, but existing methods are transductive (must be re-trained for unseen nodes) and are often geared to learn proximity rather than node structure. Graph Neural Network methods can learn structure, but are often supervised, prone to learn proximity, and do not scale well for massive graphs. Transfer learning has the potential to enable scaling to massive graphs, while preventing overfitting, and creating universal models for use on a wide variety of datasets. We propose a novel method that enables transfer learning. Our model performs better at tasks which require capture of nodes' structural information and scales as well as the current state of the art to very large graphs.
KW - graph representation learning
KW - structural graph representations
UR - http://www.scopus.com/inward/record.url?scp=85184987489&partnerID=8YFLogxK
U2 - 10.1109/BigData59044.2023.10386417
DO - 10.1109/BigData59044.2023.10386417
M3 - Conference contribution
AN - SCOPUS:85184987489
T3 - Proceedings - 2023 IEEE International Conference on Big Data, BigData 2023
SP - 5842
EP - 5851
BT - Proceedings - 2023 IEEE International Conference on Big Data, BigData 2023
A2 - He, Jingrui
A2 - Palpanas, Themis
A2 - Hu, Xiaohua
A2 - Cuzzocrea, Alfredo
A2 - Dou, Dejing
A2 - Slezak, Dominik
A2 - Wang, Wei
A2 - Gruca, Aleksandra
A2 - Lin, Jerry Chun-Wei
A2 - Agrawal, Rakesh
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE International Conference on Big Data, BigData 2023
Y2 - 15 December 2023 through 18 December 2023
ER -