Abstract
Magnetostrictive energy harvesters that convert ambient structural vibrations to useful electricity have the potential to supplement or replace batteries, especially in portable and wearable electronics. The magneto-mechanical coupling of magnetostricive materials converts mechanical energy to magnetic energy, and electro-magnetic coupling of electrical circuits converts magnetic energy to electrical energy. Additive manufacturing of magnetostrictive thin films is essential for building small-scale and flexible energy harvesters, which are difficult or even impossible to manufacture using traditional processes. To develop this technique, cobalt ferrite nanopowder was used to synthesize aqueous and non-aqueous inks for inkjet printing. Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) were used to analyze particle and agglomeration sizes. The viscosity of the inks was measured using a rotational rheometer. The ink properties, including specific particle size and viscosity, were fine-tuned to ensure successful printing. Different heat treatments and sintering processes for the printed thin films will be explored to determine their effects on the magnetostrictive properties.
Original language | American English |
---|---|
State | Published - 1 Jul 2019 |