TY - JOUR
T1 - An empirical model for B-site cation ordering in Ba(Mg⅓Ta⅔)O3
AU - Smith, Evan
AU - Tolman, Kevin R.
AU - Ubic, Rick
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2018/2/25
Y1 - 2018/2/25
N2 - Processing-structure models are needed in both the lab and industry; however, few exist for cation ordering in perovskites. The perovskite Ba(Mg1/3Ta2/3)O3 in its ordered form is one of the best known high-Q dielectric materials but requires extended high-temperature annealing to achieve high degrees of order; so an empirical model which describes the ordering as a function of an easily obtainable processing parameter would be useful. In this work, powders of Ba(Mg1/3Ta2/3)O3 were synthesized using a conventional solid-state mixed-oxide method. The as-calcined compound had a cubic (lacking long-range B-site cation order) structure but contained short-range-ordered nanodomains. Upon annealing at 1500 °C for up to 40 h an increasingly ordered arrangement of Mg2+ and Ta5+ on the B site was generated, with the ordering causing a trigonal distortion. Empirical modeling as well as first-principles calculations via density functional theory showed that this ordering process was accompanied by a volume decrease despite the fact that ordered planes stack less efficiently. An empirical model was developed to describe the ordering parameter as a function of either annealing time or effective B-site contraction. The implication of this modeling method is that it may be possible to predict the degree of cation ordering in complex perovskite systems from ionic-radii data and experimentally-derived pseudocubic lattice constants alone. Conversely, it may also be possible to predict the degree of volume expansion/contraction upon ordering, which has implications for functional properties like ionic conduction.
AB - Processing-structure models are needed in both the lab and industry; however, few exist for cation ordering in perovskites. The perovskite Ba(Mg1/3Ta2/3)O3 in its ordered form is one of the best known high-Q dielectric materials but requires extended high-temperature annealing to achieve high degrees of order; so an empirical model which describes the ordering as a function of an easily obtainable processing parameter would be useful. In this work, powders of Ba(Mg1/3Ta2/3)O3 were synthesized using a conventional solid-state mixed-oxide method. The as-calcined compound had a cubic (lacking long-range B-site cation order) structure but contained short-range-ordered nanodomains. Upon annealing at 1500 °C for up to 40 h an increasingly ordered arrangement of Mg2+ and Ta5+ on the B site was generated, with the ordering causing a trigonal distortion. Empirical modeling as well as first-principles calculations via density functional theory showed that this ordering process was accompanied by a volume decrease despite the fact that ordered planes stack less efficiently. An empirical model was developed to describe the ordering parameter as a function of either annealing time or effective B-site contraction. The implication of this modeling method is that it may be possible to predict the degree of cation ordering in complex perovskite systems from ionic-radii data and experimentally-derived pseudocubic lattice constants alone. Conversely, it may also be possible to predict the degree of volume expansion/contraction upon ordering, which has implications for functional properties like ionic conduction.
KW - Ceramics
KW - Crystal structure
KW - Order-disorder effects
KW - Rare earth alloys and compounds
KW - Sintering
KW - X-ray diffraction
UR - http://www.scopus.com/inward/record.url?scp=85037352298&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2017.11.333
DO - 10.1016/j.jallcom.2017.11.333
M3 - Article
AN - SCOPUS:85037352298
SN - 0925-8388
VL - 735
SP - 2356
EP - 2362
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
ER -