Catalytic Activity and Stability of Two-Dimensional Materials for the Hydrogen Evolution Reaction

Naiwrit Karmodak, Oliviero Andreussi

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

The catalytic performances of the surfaces of two-dimensional (2D) materials are investigated by means of accurate computational thermodynamics approaches, based on first-principles simulations. Reliable multiscale continuum embedding models are used to capture the effects of electrochemical environments on the catalytic activity and stability of the materials. The proposed simulation workflow allowed us to screen a large database of candidate 2D compounds, composed of 258 materials that have been recently characterized by simulations as easily exfoliable. Out of the starting database, 15 promising electrocatalysts for the hydrogen evolution reaction (HER) are identified. Among these compounds, CoO 2  and FeS show the lowest overpotentials and considerable aqueous stability at acidic pH.
Original languageAmerican English
JournalACS Energy Letters
Volume5
Issue number3
DOIs
StatePublished - 13 Mar 2020
Externally publishedYes

Keywords

  • evolution reactions
  • materials
  • monolayers
  • stability
  • two dimensional materials

EGS Disciplines

  • Chemistry

Fingerprint

Dive into the research topics of 'Catalytic Activity and Stability of Two-Dimensional Materials for the Hydrogen Evolution Reaction'. Together they form a unique fingerprint.

Cite this