TY - GEN
T1 - Defending Graph Convolutional Networks against Dynamic Graph Perturbations via Bayesian Self-Supervision
AU - Zhuang, Jun
AU - Al Hasan, Mohammad
N1 - Publisher Copyright:
Copyright © 2022, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2022/6/30
Y1 - 2022/6/30
N2 - In recent years, plentiful evidence illustrates that Graph Convolutional Networks (GCNs) achieve extraordinary accomplishments on the node classification task. However, GCNs may be vulnerable to adversarial attacks on label-scarce dynamic graphs. Many existing works aim to strengthen the robustness of GCNs; for instance, adversarial training is used to shield GCNs against malicious perturbations. However, these works fail on dynamic graphs for which label scarcity is a pressing issue. To overcome label scarcity, self-training attempts to iteratively assign pseudo-labels to highly confident unlabeled nodes but such attempts may suffer serious degradation under dynamic graph perturbations. In this paper, we generalize noisy supervision as a kind of self-supervised learning method and then propose a novel Bayesian self-supervision model, namely GraphSS, to address the issue. Extensive experiments demonstrate that GraphSS can not only affirmatively alert the perturbations on dynamic graphs but also effectively recover the prediction of a node classifier when the graph is under such perturbations. These two advantages prove to be generalized over three classic GCNs across five public graph datasets.
AB - In recent years, plentiful evidence illustrates that Graph Convolutional Networks (GCNs) achieve extraordinary accomplishments on the node classification task. However, GCNs may be vulnerable to adversarial attacks on label-scarce dynamic graphs. Many existing works aim to strengthen the robustness of GCNs; for instance, adversarial training is used to shield GCNs against malicious perturbations. However, these works fail on dynamic graphs for which label scarcity is a pressing issue. To overcome label scarcity, self-training attempts to iteratively assign pseudo-labels to highly confident unlabeled nodes but such attempts may suffer serious degradation under dynamic graph perturbations. In this paper, we generalize noisy supervision as a kind of self-supervised learning method and then propose a novel Bayesian self-supervision model, namely GraphSS, to address the issue. Extensive experiments demonstrate that GraphSS can not only affirmatively alert the perturbations on dynamic graphs but also effectively recover the prediction of a node classifier when the graph is under such perturbations. These two advantages prove to be generalized over three classic GCNs across five public graph datasets.
UR - http://www.scopus.com/inward/record.url?scp=85140854644&partnerID=8YFLogxK
U2 - 10.1609/aaai.v36i4.20362
DO - 10.1609/aaai.v36i4.20362
M3 - Conference contribution
AN - SCOPUS:85140854644
T3 - Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
SP - 4405
EP - 4413
BT - AAAI-22 Technical Tracks 4
T2 - 36th AAAI Conference on Artificial Intelligence, AAAI 2022
Y2 - 22 February 2022 through 1 March 2022
ER -