Deformation Twinning in Ni–Mn–Ga Micropillars with 10M Martensite

M. Reinhold, D. Kiener, William B. Knowlton, G. Dehm, Peter Müllner

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

The maximum actuation frequency of magnetic shape-memory alloys (MSMAs) significantly increases with decreasing size of the transducer making MSMAs interesting candidates for small scale actuator applications. To study the mechanical properties of Ni-Mn-Ga single crystals on small length scales, two single-domain micropillars with dimensions of 10×15×30 μ m 3 were fabricated from a Ni-Mn-Ga monocrystal using dual beam focused ion beam machining. The pillars were oriented such that the crystallographic c direction was perpendicular to the loading direction. The pillars were compressed to maximum stresses of 350 and 50 MPa, respectively. Atomic force microscopy and magnetic force microscopy were performed prior to fabrication of the pillars and following the deformation experiments. Both micropillars were deformed by twinning as evidenced by the stress-strain curve. For one pillar, a permanent deformation of 3.6% was observed and ac twins (10M martensite) were identified after unloading. For the other pillar, only 0.7% remained upon unloading. No twins were found in this pillar after unloading. The recovery of deformation is discussed in the light of pseudoelastic twinning and twin-substrate interaction. The twinning stress was higher than in similar macroscopic material. However, further studies are needed to substantiate a size effect.

Original languageAmerican English
Article number053906
JournalJournal of Applied Physics
Volume106
Issue number5
DOIs
StatePublished - 1 Sep 2009

Keywords

  • actuators
  • atomic force microscopy
  • elasticity
  • focused ion beam technology
  • gallium alloys

EGS Disciplines

  • Materials Science and Engineering

Fingerprint

Dive into the research topics of 'Deformation Twinning in Ni–Mn–Ga Micropillars with 10M Martensite'. Together they form a unique fingerprint.

Cite this