Detecting Botnet Nodes via Structural Node Representation Learning

Justin Carpenter, Janet Layne, Edoardo Serra, Alfredo Cuzzocrea

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

Botnets are an ever-growing threat to private users, small companies, and even large corporations. They are known for spamming, mass downloads, and launching distributed denial-of-service (DDoS) attacks that have a destructive impact on large corporations. With the rise of internet-of-things (IoT) devices, they are also used to mine cryptocurrency, intercept data in transit and send logs containing sensitive information to the master botnet. Many approaches have been developed to detect botnet activities. A few approaches employ graph neural networks (GNN) to analyze the behavior of hosts using a directed graph to represent their communications. However, while designed to capture structural graph properties, GNN may overfit, and therefore fail to capture these properties when the network is unknown. In this work we hypothesize that structural graph patterns can be used to effectively detect Botnets. We then propose a structural iterative representation learning approach for graph nodes, which is designed to perform well on unseen data, called Inferential SIR-GN. Our model creates a vector representation for each node that epitomizes its structural information. We demonstrate that this set of node representation vectors can be used with a neural network classifier to identify bot nodes within an unknown network with better performance than the current state-of-the-art GNN based method.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
EditorsYixin Chen, Heiko Ludwig, Yicheng Tu, Usama Fayyad, Xingquan Zhu, Xiaohua Tony Hu, Suren Byna, Xiong Liu, Jianping Zhang, Shirui Pan, Vagelis Papalexakis, Jianwu Wang, Alfredo Cuzzocrea, Carlos Ordonez
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5357-5364
Number of pages8
ISBN (Electronic)9781665439022
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Big Data, Big Data 2021 - Virtual, Online, United States
Duration: 15 Dec 202118 Dec 2021

Publication series

NameProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021

Conference

Conference2021 IEEE International Conference on Big Data, Big Data 2021
Country/TerritoryUnited States
CityVirtual, Online
Period15/12/2118/12/21

Keywords

  • Botnet Detection
  • Machine Learning
  • Structural Graph Representation Learning

Fingerprint

Dive into the research topics of 'Detecting Botnet Nodes via Structural Node Representation Learning'. Together they form a unique fingerprint.

Cite this