Detecting Geyser Activity with Infrasound

Jeffrey B. Johnson, J. F. Anderson, R. E. Anthony, M. Sciotto

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

We monitored geyser activity in the Lower Geyser Basin (LGB) of Yellowstone National Park with dual four-element microphone arrays separated by ~. 600. m. The arrays were independently used to identify incident coherent plane wave energy, then conjoint cross beam back-azimuths from the two arrays were used to precisely locate signal sources. During a week in August 2011 we located repeating infrasound events, peaked in energy between 1 and 10. Hz, originating from at least five independent geothermal features, including the episodically erupting Great Fountain, Fountain and Kaleidoscope Geysers, as well as periodic infrasound from nearby Botryoidal and persistent sound from Firehole Spring. Although activity from nearby cone-type geysers was not detected in the infrasound band up through 50. Hz, the major fountain-type geysers (i.e., with columns greater than 10. m) could be detected at several kilometers, and two minor geysers (i.e., a few meters in eruption height) could be tracked at distances up to a few hundred meters. Detection of geyser activity was especially comprehensive at night when ambient noise was low. We conclude that infrasound monitoring of fountain-type geysers permits convenient tracking of geyser activity, episodicity, signal duration, energy content, and spectral content. These parameters enable objective statistical quantification of geyser behavior and changes over time that may be due to external forcing. Infrasonic study of geyser activity in an individual basin has great monitoring utility and can be reasonably accomplished with two or more distributed sensor arrays.

Original languageAmerican English
Pages (from-to)105-117
Number of pages13
JournalJournal of Volcanology and Geothermal Research
Volume256
DOIs
StatePublished - 15 Apr 2013

Keywords

  • Array analysis
  • Geyser
  • Infrasound monitoring
  • Yellowstone

EGS Disciplines

  • Earth Sciences
  • Geophysics and Seismology

Fingerprint

Dive into the research topics of 'Detecting Geyser Activity with Infrasound'. Together they form a unique fingerprint.

Cite this