Dual-Task and Anticipation Impact Lower Limb Biomechanics During a Single-Leg Cut with Body Borne Load

Kayla D. Seymore, Sarah E. Cameron, Jonathan T. Kaplan, John W. Ramsay, Tyler N. Brown

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

This study quantified how a dual cognitive task impacts lower limb biomechanics during anticipated and unanticipated single-leg cuts with body borne load. Twenty-four males performed anticipated and unanticipated cuts with and without a dual cognitive task with three load conditions: no load (∼6 kg), medium load (15% of BW), and heavy load (30% of BW). Lower limb biomechanics were submitted to a repeated measures linear mixed model to test the main and interaction effects of load, anticipation, and dual task. With body borne load, participants increased peak stance (PS) hip flexion (p = .004) and hip internal rotation (p = .001) angle, and PS hip flexion (p = .001) and internal rotation (p = .018), and knee flexion (p = .016) and abduction (p = .001) moments. With the dual task, participants decreased PS knee flexion angle (p < .001) and hip flexion moment (p = .027), and increased PS knee external rotation angle (p = .034). During the unanticipated cut, participants increased PS hip (p = .040) and knee flexion angle (p < .001), and decreased PS hip adduction (p = .001), and knee abduction (p = .005) and external rotation (p = .026) moments. Adding body borne load produces lower limb biomechanical adaptations thought to increase risk of musculoskeletal injury, but neither anticipation nor dual task exaggerated those biomechanical adaptations. With a dual task, participants adopted biomechanics known to increase injury risk; whereas, participants used lower limb biomechanics thought to decrease injury risk during unanticipated cuts.

Original languageAmerican English
Pages (from-to)131-137
Number of pages7
JournalJournal of Biomechanics
Volume65
DOIs
StatePublished - 8 Dec 2017

Keywords

  • attention
  • decision-making
  • kinematics
  • kinetics
  • load carriage

EGS Disciplines

  • Kinesiology

Fingerprint

Dive into the research topics of 'Dual-Task and Anticipation Impact Lower Limb Biomechanics During a Single-Leg Cut with Body Borne Load'. Together they form a unique fingerprint.

Cite this