Effect Of Geometry On Small Scale Venturi Nozzle Performance

Hannah O'Hern, Xiang Zhang, Bahman Abbasi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A parametric study was conducted on small scale, subsonic Venturi nozzles. The purpose of this study was to determine the effect of different operating conditions and different geometric parameters on the performance of the nozzle. In this study, the performance of the nozzle was defined as the ratio of suction mass flow to motive mass flow, or the suction ratio. The parametric study included 15 different nozzle geometries, under various operating conditions, for a total of 55 case studies. The parametric study was conducted using CFD in Ansys Fluent. Additionally, experimental validation was conducted for several 3D printed nozzles. Dimensional analysis of the parameters was completed to determine the form of a dimensionless correlation for the suction ratio as a function of the other parameters. The case studies were run through a constrained multi-variable global optimization code to determine the dependency on each dimensionless group. This correlation can be used as a design guide for Venturi nozzles. If operating conditions dictate an optimum suction ratio, the ideal nozzle geometry can be determined. Alternatively, based on the geometry of a given nozzle, the resulting suction ratio can be determined.

Original languageEnglish
Title of host publicationFluids Engineering
ISBN (Electronic)9780791885666
DOIs
StatePublished - 2021
EventASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021 - Virtual, Online
Duration: 1 Nov 20215 Nov 2021

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume10

Conference

ConferenceASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021
CityVirtual, Online
Period1/11/215/11/21

Keywords

  • Mixing nozzle
  • Parametric study
  • Venturi nozzle

Fingerprint

Dive into the research topics of 'Effect Of Geometry On Small Scale Venturi Nozzle Performance'. Together they form a unique fingerprint.

Cite this