@inproceedings{dfe587b443404013b0fc588cee4ed665,
title = "Evaluating the Application of Microbial Induced Calcite Precipitation Technique to Stabilize Expansive Soils",
abstract = " Expansive soils, also known as swell-shrink soils have been a problem for civil infrastructures including roads and foundations from ancient times. The use of chemical additives such as cement and lime to stabilize expansive soils is a common practice among geotechnical engineers, especially for lightly loaded structures. However, several occurrences of subgrade failures have been observed after stabilizing with chemical additives. Hence, engineers are in search of sustainable stabilization alternatives. Microbial Induced Calcite Precipitation (MICP) is gaining attention as an environmentally friendly soil improvement technique. Several researchers have successfully tested its feasibility in mitigating liquefaction-induced problems in sandy soils. In this research, the authors are evaluating its effectiveness in stabilizing expansive soils. For this purpose two natural expansive soils with high and low plasticity properties were subjected to MICP treatments. The soil samples were first augmented with bacterium Sporosarcina Pasteurii and then treated with Calcium Chloride and Urea. Variables such as microbial concentrations and curing times were studied in this research. Geotechnical testing including Atterberg limits and unconfined compression strength were performed to evaluate the efficacy of MICP treatments. Preliminary results indicate that there is a reduction in plasticity and swelling characteristics of the soils and increase in the unconfined compression strength.",
keywords = "Expansive Soils, MICP Treatments, Microbial Concentration, Microbially Induced Calcite Precipitation (MICP), Unconfined Compressive Strength (UCS)",
author = "Bhaskar Chittoori and Sikha Neupane",
note = "Publisher Copyright: {\textcopyright} 2019, Springer International Publishing AG, part of Springer Nature.; 5th GeoChina International Conference on Civil Infrastructures Confronting Severe Weathers and Climate Changes: From Failure to Sustainability, 2018 ; Conference date: 23-07-2018 Through 25-07-2018",
year = "2018",
doi = "10.1007/978-3-319-95783-8_2",
language = "American English",
isbn = "9783319957821",
series = "Sustainable Civil Infrastructures",
publisher = "Springer Science and Business Media B.V.",
pages = "10--19",
editor = "Wen-Chieh Cheng and Junsheng Yang and Jinfeng Wang",
booktitle = "GeoChina 2018",
address = "Netherlands",
}