TY - GEN
T1 - Experimental characterization of a carbon fiber composite material heat sink in boiling heat transfer using FC-72
AU - Gandikota, Venugopal
AU - Fleischer, Amy S.
AU - Chengalvala, Harish
AU - Jones, G. F.
PY - 2006
Y1 - 2006
N2 - The on-going trend towards increasing device performance while shrinking device size often results in escalating power densities and high operating temperatures. High operating temperatures may lead to reduced reliability and induced thermal stresses. Therefore, it is necessary to employ new and innovative thermal management techniques to maintain a suitable junction temperature at high power densities. For this reason, there is interest in a variety of liquid cooling techniques. This study analyzes a composite material heat sink. The heat sink consists of a very large number of small cross-section fins fabricated from carbon pitch fibers and epoxy. These carbon pitch fibers have a high thermal conductivity along the length of the fin. It is expected that the longer length will result in more heat transfer surface area and a more effective heat sink. This experimental study characterizes the thermal performance of the carbon-fiber heat sink in a two-phase closed loop thermosyphon using FC-72 as the operating fluid. The influence of heat load, thermosyphon fill volume, and condenser operating temperature on the overall thermal performance is examined. The results of this experiment provide significant insight into the possible implementation and benefits of carbon fiber heat sink technology in two-phase flow leading to significant improvements in thermal management strategies for advanced electronics.
AB - The on-going trend towards increasing device performance while shrinking device size often results in escalating power densities and high operating temperatures. High operating temperatures may lead to reduced reliability and induced thermal stresses. Therefore, it is necessary to employ new and innovative thermal management techniques to maintain a suitable junction temperature at high power densities. For this reason, there is interest in a variety of liquid cooling techniques. This study analyzes a composite material heat sink. The heat sink consists of a very large number of small cross-section fins fabricated from carbon pitch fibers and epoxy. These carbon pitch fibers have a high thermal conductivity along the length of the fin. It is expected that the longer length will result in more heat transfer surface area and a more effective heat sink. This experimental study characterizes the thermal performance of the carbon-fiber heat sink in a two-phase closed loop thermosyphon using FC-72 as the operating fluid. The influence of heat load, thermosyphon fill volume, and condenser operating temperature on the overall thermal performance is examined. The results of this experiment provide significant insight into the possible implementation and benefits of carbon fiber heat sink technology in two-phase flow leading to significant improvements in thermal management strategies for advanced electronics.
UR - http://www.scopus.com/inward/record.url?scp=85196513318&partnerID=8YFLogxK
U2 - 10.1115/IMECE2006-13356
DO - 10.1115/IMECE2006-13356
M3 - Conference contribution
AN - SCOPUS:85196513318
SN - 0791837904
SN - 9780791837900
T3 - American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD
BT - Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Heat Transfer
T2 - 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006
Y2 - 5 November 2006 through 10 November 2006
ER -