Exploring Author Gender in Book Rating and Recommendation

Michael D. Ekstrand, Mucun Tian, Mohammed R. Imran Kazi, Hoda Mehrpouyan, Daniel Kluver

Research output: Contribution to journalArticlepeer-review

88 Scopus citations
4 Downloads (Pure)

Abstract

Collaborative filtering algorithms find useful patterns in rating and consumption data and exploit these patterns to guide users to good items. Many of the patterns in rating datasets reflect important real-world differences between the various users and items in the data; other patterns may be irrelevant or possibly undesirable for social or ethical reasons, particularly if they reflect undesired discrimination, such as gender or ethnic discrimination in publishing. In this work, we examine the response of collaborative filtering recommender algorithms to the distribution of their input data with respect to a dimension of social concern, namely content creator gender. Using publicly-available book ratings data, we measure the distribution of the genders of the authors of books in user rating profiles and recommendation lists produced from this data. We find that common collaborative filtering algorithms differ in the gender distribution of their recommendation lists, and in the relationship of that output distribution to user profile distribution.

Original languageAmerican English
JournalRecSys '18: Proceedigns of the 12th ACM Conference on Recommender Systems
StatePublished - 1 Jan 2018

Keywords

  • bias
  • collaborative filtering
  • discrimination
  • user impact

EGS Disciplines

  • Computer Sciences

Fingerprint

Dive into the research topics of 'Exploring Author Gender in Book Rating and Recommendation'. Together they form a unique fingerprint.

Cite this