Exploring the Relationships Between Exoplanet Orbital Architectures and Host Star Compositions

Sevio M. Stanton, Brian Jackson, Ciera Partyka

Research output: Contribution to conferencePresentation

Abstract

Gas giants with orbital periods below ten days are called, “hot Jupiters,” and one of the likely fates is for the planets to lose their atmospheres, leaving behind exposed, rocky and icy cores, — thereby contributing to another population of planets, ultra-short-period planets (USPs). Recent evidence suggests, however, that USPs might not arise from tidal disruption of hot Jupiter atmospheres after all, and the two classes of planets may instead be two different populations entirely. Using the bootstrap re-sampling method to randomly generate large samples of the two mentioned categories of planets and applying the Kolmogorov-Smirnov test to compare the metallicities of stars hosting each kind of planet, we hope to find what percentage of USPs, if any, are likely to be the rocky remains of hot Jupiters.

Original languageAmerican English
StatePublished - 12 Jul 2019

Fingerprint

Dive into the research topics of 'Exploring the Relationships Between Exoplanet Orbital Architectures and Host Star Compositions'. Together they form a unique fingerprint.

Cite this