First-Principles Comparative Study of UN and Zr Corrosion

Ember L. Sikorski, Thiago H. da Silva, Larry K. Aagesen, Brian J. Jaques, Lan Li

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We studied surface corrosion effects on Zr and UN using first-principles density functional theory-based calculations. We focused on the energetics of Zr (1000), UN (100) and UN (110) surfaces, exposed to water and oxygen. Average distance between the terminating UN (100) surface and bulk increases due to the presence of additional oxygen content, as well as for the (110) surface. The average distance between the surface layer and bulk is greater in the (110) surface than the (100) surface after water adsorption. Oxygen concentration determines whether H2 or oxynitrde is formed on the (110) surface. Local density of states and partial charge density show the bonding between the UN surfaces and adsorbates. From an electronic energy of −2 eV to the Fermi level, the majority of electrons are found to be localized around U atoms. Electron localization function calculations further reveal the corrosion mechanism details.

Original languageAmerican English
Pages (from-to)402-412
Number of pages11
JournalJournal of Nuclear Materials
Volume523
DOIs
StatePublished - Sep 2019

EGS Disciplines

  • Materials Science and Engineering

Fingerprint

Dive into the research topics of 'First-Principles Comparative Study of UN and Zr Corrosion'. Together they form a unique fingerprint.

Cite this