Abstract
Death Valley (California, USA) hosts iconic Cryogenian snowball Earth deposits, but the lack of direct geochronological constraints has permitted a variety of correlations and age models. Here, we report two precise zircon U-Pb isotope dilution–thermal ionization mass spectrometry dates for the Kingston Peak Formation: a volcanic eruptive age of 705.44 ± 0.28 Ma from the synglacial Limekiln Spring Member, and a maximum depositional age of 651.69 ± 0.64 Ma from the nonglacial Thorndike submember, which is below the Wildrose diamictite. These dates confirm that the Limekiln Spring and Surprise Members were deposited during the Sturtian glaciation, while the Wildrose submember is a Marinoan glacial deposit, and the overlying Sentinel Peak Member of the Noonday Formation is a Marinoan cap carbonate. Additionally, the age from the Thorndike submember supersedes existing radioisotopic ages from the Datangpo Formation in South China as the youngest constraint on the onset of the Marinoan glaciation, demonstrating that the Cryogenian nonglacial interlude lasted for at least 9 m.y. and the Marinoan glaciation was < 17 m.y. long. Cryogenian glaciation in western Laurentia occurred against the backdrop of ∼85 m.y. of episodic rift-related subsidence and magmatism within laterally discontinuous, fault-bound basins.
Original language | American English |
---|---|
Pages (from-to) | 1083-1087 |
Number of pages | 5 |
Journal | Geology |
Volume | 48 |
Issue number | 11 |
DOIs | |
State | Published - Nov 2020 |
EGS Disciplines
- Earth Sciences
- Geophysics and Seismology