Global Swarming While Preserving Connectivity via Lagrange–Poincarè Equations

Research output: Contribution to journalArticlepeer-review

Abstract

<div class="line" id="line-5"> <span style='color: rgb(80, 80, 80); font-family: Arial, Helvetica, "Lucida Sans Unicode", "Microsoft Sans Serif", "Segoe UI Symbol", STIXGeneral, "Cambria Math", "Arial Unicode MS", sans-serif; font-size: medium;'> In this paper, we exploit symmetry properties of multi-agent robot systems to design control laws that preserve connectivity while swarming. We start by designing a connectivity control law for agents with configuration spaces&nbsp; </span> <span style='color: rgb(51, 51, 51); background-color: rgb(249, 249, 249); font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 14px;'> &reals;&lt;sup&gt; </span> <span style='color: rgb(80, 80, 80); font-family: Arial, Helvetica, "Lucida Sans Unicode", "Microsoft Sans Serif", "Segoe UI Symbol", STIXGeneral, "Cambria Math", "Arial Unicode MS", sans-serif; font-size: 14.4px;'> 3&lt;/sup&gt; </span> <span style='color: rgb(80, 80, 80); font-family: Arial, Helvetica, "Lucida Sans Unicode", "Microsoft Sans Serif", "Segoe UI Symbol", STIXGeneral, "Cambria Math", "Arial Unicode MS", sans-serif; font-size: medium;'> and&nbsp; </span> <span style='color: rgb(80, 80, 80); font-family: Arial, Helvetica, "Lucida Sans Unicode", "Microsoft Sans Serif", "Segoe UI Symbol", STIXGeneral, "Cambria Math", "Arial Unicode MS", sans-serif; font-size: 14.4px;'> <i> SO </i> (3) </span> <span style='color: rgb(80, 80, 80); font-family: Arial, Helvetica, "Lucida Sans Unicode", "Microsoft Sans Serif", "Segoe UI Symbol", STIXGeneral, "Cambria Math", "Arial Unicode MS", sans-serif; font-size: medium;'> &nbsp;that is invariant under the action of the special Euclidean group&nbsp; </span> <span style='color: rgb(80, 80, 80); font-family: Arial, Helvetica, "Lucida Sans Unicode", "Microsoft Sans Serif", "Segoe UI Symbol", STIXGeneral, "Cambria Math", "Arial Unicode MS", sans-serif; font-size: 14.4px;'> <i> SE </i> (3) </span> <span style='color: rgb(80, 80, 80); font-family: Arial, Helvetica, "Lucida Sans Unicode", "Microsoft Sans Serif", "Segoe UI Symbol", STIXGeneral, "Cambria Math", "Arial Unicode MS", sans-serif; font-size: medium;'> &nbsp;and the special orthogonal group&nbsp; </span> <span style='color: rgb(80, 80, 80); font-family: Arial, Helvetica, "Lucida Sans Unicode", "Microsoft Sans Serif", "Segoe UI Symbol", STIXGeneral, "Cambria Math", "Arial Unicode MS", sans-serif; font-size: 14.4px;'> <i> SO </i> (3) </span> <span style='color: rgb(80, 80, 80); font-family: Arial, Helvetica, "Lucida Sans Unicode", "Microsoft Sans Serif", "Segoe UI Symbol", STIXGeneral, "Cambria Math", "Arial Unicode MS", sans-serif; font-size: medium;'> , respectively. Therefore, the dynamics of such multi-agent systems is amenable to be reduced by these group actions. We then utilize the Lagrange&ndash;Poincar&eacute; equations that split the Euler&ndash;Lagrange equations for the multi-agent system into horizontal and vertical parts. The invariance of the connectivity controller implies that its control effort has zero vertical component. We then use the resulting vertical equations of motion to design a control law that asymptotically stabilizes the centroid and the orientation of the swarm at a desired pose. </span></div>
Original languageAmerican English
JournalAutomatica
Volume71
DOIs
StatePublished - Sep 2016

Keywords

  • Lagrange–Poincaré
  • horizontal-vertical
  • multi-agent systems
  • principle bundles
  • swarming
  • symmetry

EGS Disciplines

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Global Swarming While Preserving Connectivity via Lagrange–Poincarè Equations'. Together they form a unique fingerprint.

Cite this