TY - JOUR
T1 - Hydrological Partitioning in the Critical Zone: Recent Advances and Opportunities for Developing Transferable Understanding of Water Cycle Dynamics
AU - Brooks, Paul D.
AU - Chorover, Jon
AU - Fan, Ying
AU - Godsey, Sarah E.
AU - Maxwell, Reed M.
AU - McNamara, James P.
AU - Tague, Christina
N1 - Publisher Copyright:
© 2015. American Geophysical Union. All Rights Reserved.
PY - 2015/9
Y1 - 2015/9
N2 - Hydrology is an integrative discipline linking the broad array of water-related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to the base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross-site focus on ‘‘critical zone hydrology’’ has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: ‘‘how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?’’ Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.
AB - Hydrology is an integrative discipline linking the broad array of water-related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to the base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross-site focus on ‘‘critical zone hydrology’’ has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: ‘‘how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?’’ Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.
KW - critical zone
KW - ecohydrology
KW - geohydrology
KW - hydrochemistry
UR - http://www.scopus.com/inward/record.url?scp=84944354100&partnerID=8YFLogxK
UR - https://scholarworks.boisestate.edu/geo_facpubs/271
U2 - 10.1002/2015WR017039
DO - 10.1002/2015WR017039
M3 - Review article
SN - 0043-1397
VL - 51
SP - 6973
EP - 6987
JO - Water Resources Research
JF - Water Resources Research
IS - 9
ER -