Improved Model for Three-Dimensional Virtual Concrete: Anm Model

Stephen Thomas, Yang Lu, E. J. Garboczi

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Construction aggregate particles, fine or coarse, can be scanned by X-ray computed tomography and mathematically characterized using spherical harmonic series, and can then be used to simulate random parking of irregular aggregates to form a virtual mortar or concrete using the Anm model. Any other similar composite system of irregular (star-shaped) particles in a matrix can also be simulated. This paper integrates two new algorithms into the Anm model. The first new algorithm is the extent overlap box (EOB) method that detects interparticle contact, and the second is the capability of adding a uniform-thickness shell to each particle. Parameter analysis has shown that the EOB method leads to a more accurate detection of interparticle contact with a smaller computational cost than the previously used Newton-Raphson method. The uniform-thickness shell provides a customizable tool to control the minimum intersurface distance of particles during the parking process, as well as to simulate processes and microstructure that are dependent on the Euclidean distance from a particle surface. For mortar and concrete, the uniform-thickness shell can represent the observed interfacial transition zone (ITZ) structure. A parallel processing application programming interface (API) was integrated into the Anm model to accelerate the particle placement process by parallel optimization, which results in significant improvements in the packing efficiency on multicore processor systems. This significant speedup as well the improved contact function and new uniform-thickness shell algorithm greatly extend the range, size, and type of particle systems that can be studied.

Original languageAmerican English
Article number04015027
JournalJournal of Computing in Civil Engineering
Volume30
Issue number2
DOIs
StatePublished - Mar 2016

Keywords

  • Composites
  • Concrete and mortar
  • Contact function
  • Interfacial transition zone
  • Parallel processing
  • Spherical harmonics
  • Uniform-thickness shell

EGS Disciplines

  • Civil Engineering

Fingerprint

Dive into the research topics of 'Improved Model for Three-Dimensional Virtual Concrete: Anm Model'. Together they form a unique fingerprint.

Cite this