Influence of Morphology and Permafrost Dynamics on Hyporheic Exchange in Arctic Headwater Streams under Warming Climate Conditions

Jay P. Zarnetske, Michael N. Gooseff, W. Breck Bowden, Morgan J. Greenwald, Troy R. Brosten, John H. Bradford, James P. McNamara

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

We investigated surface-subsurface (hyporheic) exchange in two morphologically distinct arctic headwater streams experiencing warming (thawing) sub-channel conditions. Empirically parameterized and calibrated groundwater flow models were used to assess the influence of sub-channel thaw on hyporheic exchange. Average thaw depths were at least two-fold greater under the higher-energy, alluvial stream than under the lowenergy, peat-lined stream. Alluvial hyporheic exchange had shorter residence times and longer flowpaths that occurred across greater portions of the thawed sediments. For both reaches, the morphologic (longitudinal bed topography) and hydraulic conditions (surface and groundwater flow properties) set the potential for hyporheic flow. Simulations of deeper thaw, as predicted under a warming arctic climate, only influence hyporheic exchange until a threshold depth. This depth is primarily determined by the hydraulic head gradients imposed by the stream morphology. Therefore, arctic hyporheic exchange extent is likely to be independent of greater sub-stream thaw depths.

Original languageAmerican English
Article numberL02501
JournalGeophysical Research Letters
Volume35
Issue number2
DOIs
StatePublished - 16 Jan 2008

Keywords

  • arctic streams
  • climate change
  • hyporheic exchange

EGS Disciplines

  • Earth Sciences
  • Geophysics and Seismology

Fingerprint

Dive into the research topics of 'Influence of Morphology and Permafrost Dynamics on Hyporheic Exchange in Arctic Headwater Streams under Warming Climate Conditions'. Together they form a unique fingerprint.

Cite this