Integrating information retrieval, execution and link analysis algorithms to improve feature location in software

Bogdan Dit, Meghan Revelle, Denys Poshyvanyk

Research output: Contribution to journalArticlepeer-review

83 Scopus citations

Abstract

Data fusion is the process of integrating multiple sources of information such that their combination yields better results than if the data sources are used individually. This paper applies the idea of data fusion to feature location, the process of identifying the source code that implements specific functionality in software. A data fusion model for feature location is presented which defines new feature location techniques based on combining information from textual, dynamic, and web mining or link analyses algorithms applied to software. A novel contribution of the proposed model is the use of advanced web mining algorithms to analyze execution information during feature location. The results of an extensive evaluation on three Java systems indicate that the new feature location techniques based on web mining improve the effectiveness of existing approaches by as much as 87%.

Original languageEnglish
Pages (from-to)277-309
Number of pages33
JournalEmpirical Software Engineering
Volume18
Issue number2
DOIs
StatePublished - Apr 2013

Keywords

  • Concept location
  • Feature identification
  • Information retrieval
  • Program comprehension
  • Software evolution and maintenance
  • Web mining

Fingerprint

Dive into the research topics of 'Integrating information retrieval, execution and link analysis algorithms to improve feature location in software'. Together they form a unique fingerprint.

Cite this