Abstract
One of the best magneto-optical claddings for optical isolators in photonic integrated circuits is sputter deposited cerium-doped terbium iron garnet (Ce:TbIG) which has a large Faraday rotation (≈−3500° cm−1 at 1550 nm). Near-ideal stoichiometry ((Ce+Tb)/Fe = 0.57) of Ce0.5Tb2.5Fe4.75O12 is found to have a 44 nm magnetic dead layer that can impede the interaction of propagating modes with garnet claddings. The effective anisotropy of Ce:TbIG on Si is also important, but calculations using bulk thermal mismatch overestimate the effective anisotropy. Here, X-ray diffraction measurements yield highly accurate measurements of strain that show anisotropy favors an in-plane magnetization in agreement with the positive magnetostriction of Ce:TbIG. Upon doping TbIG with Ce, a slight decrease in compensation temperature occurs which points to preferential rare-earth occupation in dodecahedral sites and an absence of cation redistribution between different lattice sites. The high Faraday rotation, large remanent ratio, large coercivity, and preferential in-plane magnetization enable Ce:TbIG to be an in-plane latched garnet, immune to stray fields with magnetization collinear to direction of light propagation.
Original language | American English |
---|---|
Journal | Advanced Functional Materials |
Volume | 30 |
Issue number | 15 |
DOIs | |
State | Published - 14 Apr 2020 |
Externally published | Yes |
Keywords
- Faraday rotation
- anistropy
- compensation temperature
- magneto-optical garnets
EGS Disciplines
- Computer Sciences