TY - JOUR
T1 - Is the blood flow response to a single contraction determined by work performed?
AU - Hamann, Jason J.
AU - Buckwalter, John B.
AU - Clifford, Philip S.
AU - Shoemaker, J. Kevin
PY - 2004/6
Y1 - 2004/6
N2 - Nine healthy volunteers performed a series of single handgrip isometric contractions to test the hypothesis that the blood flow response to a contraction is determined solely by the tension-time index (isometric analog of work). Contractions were performed in duplicate at 15, 30, and 60% of maximal voluntary contraction (MVC) at durations of 0.5, 1, and 2 s. Forearm blood flow (FBF) was measured beat by beat by using Doppler ultrasound. Peak FBF responded in a graded fashion to graded increases in peak tension with contraction time held constant (35, 56, and 90 ml/min for 15, 30, and 60% MVC for 1 s, respectively). When tension was kept constant, peak FBF responded in a graded fashion to graded increases in duration (77, 90, and 97 ml/min for 60% MVC for 0.5, 1, and 2 s). With a constant tension-time index, peak FBF responded in a graded fashion to graded increases in peak tension (48, 56, and 77 ml/min for 15% MVC/2 s, 30% MVC/1 s, and 60% MVC/0.5 s). Similar trends were also observed for total postcontraction hyperemia. Blood flow increased regardless of whether the change in tension-time index was accomplished by an increase in tension or duration of contraction. However, with a constant tension-time index, the change in blood flow was related to the peak tension developed. Our results suggest that the blood flow response to a single muscle contraction is not determined solely by the work performed (tension-time index) but also by the number of muscle fibers recruited.
AB - Nine healthy volunteers performed a series of single handgrip isometric contractions to test the hypothesis that the blood flow response to a contraction is determined solely by the tension-time index (isometric analog of work). Contractions were performed in duplicate at 15, 30, and 60% of maximal voluntary contraction (MVC) at durations of 0.5, 1, and 2 s. Forearm blood flow (FBF) was measured beat by beat by using Doppler ultrasound. Peak FBF responded in a graded fashion to graded increases in peak tension with contraction time held constant (35, 56, and 90 ml/min for 15, 30, and 60% MVC for 1 s, respectively). When tension was kept constant, peak FBF responded in a graded fashion to graded increases in duration (77, 90, and 97 ml/min for 60% MVC for 0.5, 1, and 2 s). With a constant tension-time index, peak FBF responded in a graded fashion to graded increases in peak tension (48, 56, and 77 ml/min for 15% MVC/2 s, 30% MVC/1 s, and 60% MVC/0.5 s). Similar trends were also observed for total postcontraction hyperemia. Blood flow increased regardless of whether the change in tension-time index was accomplished by an increase in tension or duration of contraction. However, with a constant tension-time index, the change in blood flow was related to the peak tension developed. Our results suggest that the blood flow response to a single muscle contraction is not determined solely by the work performed (tension-time index) but also by the number of muscle fibers recruited.
KW - Exercise
KW - Human
KW - Hyperemia
KW - Skeletal muscle
KW - Tension-time index
UR - http://www.scopus.com/inward/record.url?scp=2442674179&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00779.2003
DO - 10.1152/japplphysiol.00779.2003
M3 - Article
C2 - 14766786
AN - SCOPUS:2442674179
SN - 8750-7587
VL - 96
SP - 2146
EP - 2152
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 6
ER -