Marginal Detachment Zones: The Fracture Factories of Ice Shelves?

Chris Miele, Timothy C. Bartholomaus, Ellyn M. Enderlin

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Along the lateral margins of floating ice shelves in Greenland and Antarctica, ice flow past confining margins and pinning points is often accompanied by extensive rifting. Rifts in zones of marginal decoupling (“detachment zones”) typically propagate inward from the margins and result in many of Earth's largest calving events. Velocity maps of detachment zones indicate that flow through these regions is spatially transitioning from confined to unconfined ice shelf flow. We employ the software package icepack to demonstrate that longitudinally decreasing marginal resistance reproduces observed transitions in flow regime, and we show that these spatial transitions are accompanied by near-margin tension sufficient to explain full-thickness rifts. Thus, we suggest that zones of progressive decoupling are a primary control on ice shelf calving. The steadiness of detachment zone positions may be a good indicator of ice shelf vulnerability, with migratory or thinning detachment zones indicating shelves at risk of dynamic speedup and increased fracture.

Original languageEnglish
Article numbere2022JF006959
JournalJournal of Geophysical Research: Earth Surface
Volume128
Issue number6
DOIs
StatePublished - Jun 2023

Keywords

  • Antarctica
  • Greenland
  • ice shelves
  • iceberg calving

Fingerprint

Dive into the research topics of 'Marginal Detachment Zones: The Fracture Factories of Ice Shelves?'. Together they form a unique fingerprint.

Cite this