TY - JOUR
T1 - Mass conservation of the unified continuous and discontinuous element-based Galerkin methods on dynamically adaptive grids with application to atmospheric simulations
AU - Kopera, Michal A.
AU - Giraldo, Francis X.
N1 - Publisher Copyright:
© 2015 Elsevier Inc..
PY - 2015/9/5
Y1 - 2015/9/5
N2 - We perform a comparison of mass conservation properties of the continuous (CG) and discontinuous (DG) Galerkin methods on non-conforming, dynamically adaptive meshes for two atmospheric test cases. The two methods are implemented in a unified way which allows for a direct comparison of the non-conforming edge treatment. We outline the implementation details of the non-conforming direct stiffness summation algorithm for the CG method and show that the mass conservation error is similar to the DG method. Both methods conserve to machine precision, regardless of the presence of the non-conforming edges. For lower order polynomials the CG method requires additional stabilization to run for very long simulation times. We addressed this issue by using filters and/or additional artificial viscosity. The mathematical proof of mass conservation for CG with non-conforming meshes is presented in Appendix B.
AB - We perform a comparison of mass conservation properties of the continuous (CG) and discontinuous (DG) Galerkin methods on non-conforming, dynamically adaptive meshes for two atmospheric test cases. The two methods are implemented in a unified way which allows for a direct comparison of the non-conforming edge treatment. We outline the implementation details of the non-conforming direct stiffness summation algorithm for the CG method and show that the mass conservation error is similar to the DG method. Both methods conserve to machine precision, regardless of the presence of the non-conforming edges. For lower order polynomials the CG method requires additional stabilization to run for very long simulation times. We addressed this issue by using filters and/or additional artificial viscosity. The mathematical proof of mass conservation for CG with non-conforming meshes is presented in Appendix B.
KW - Adaptive mesh refinement
KW - Atmospheric simulations
KW - Compressible Euler equations
KW - Continuous Galerkin method
KW - Discontinuous Galerkin method
KW - Non-conforming mesh
UR - https://www.scopus.com/pages/publications/84929614579
U2 - 10.1016/j.jcp.2015.05.010
DO - 10.1016/j.jcp.2015.05.010
M3 - Article
VL - 297
SP - 90
EP - 103
JO - Journal of Computational Physics
JF - Journal of Computational Physics
ER -