TY - JOUR
T1 - Mass detection with a nonlinear nanomechanical resonator
AU - Buks, Eyal
AU - Yurke, Bernard
PY - 2006
Y1 - 2006
N2 - Nanomechanical resonators having small mass, high resonance frequency, and low damping rate are widely employed as mass detectors. We study the performance of such a detector when the resonator is driven into a region of nonlinear oscillations. We predict theoretically that in this region the system acts as a phase-sensitive mechanical amplifier. This behavior can be exploited to achieve noise squeezing in the output signal when homodyne detection is employed for readout. We show that mass sensitivity of the device in this region may exceed the upper bound imposed by thermomechanical noise upon the sensitivity when operating in the linear region. On the other hand, we show that the high mass sensitivity is accompanied by a slowing down of the response of the system to a change in the mass.
AB - Nanomechanical resonators having small mass, high resonance frequency, and low damping rate are widely employed as mass detectors. We study the performance of such a detector when the resonator is driven into a region of nonlinear oscillations. We predict theoretically that in this region the system acts as a phase-sensitive mechanical amplifier. This behavior can be exploited to achieve noise squeezing in the output signal when homodyne detection is employed for readout. We show that mass sensitivity of the device in this region may exceed the upper bound imposed by thermomechanical noise upon the sensitivity when operating in the linear region. On the other hand, we show that the high mass sensitivity is accompanied by a slowing down of the response of the system to a change in the mass.
UR - http://www.scopus.com/inward/record.url?scp=33750491936&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.74.046619
DO - 10.1103/PhysRevE.74.046619
M3 - Article
AN - SCOPUS:33750491936
SN - 1539-3755
VL - 74
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 4
M1 - 046619
ER -