New Constraints on Mantle Carbon from Mid-Atlantic Ridge Popping Rocks

M. P. Jones, V. D. Wanless, S. A. Soule, M. D. Kurz, E. Mittelstaedt, D. J. Fornari, J. Curtice, F. Klein, V. Le Roux, H. Brodsky, S. Péron, D. M. Schwartz

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Despite the influence of mantle carbon on melt formation and migration, global volatile budgets, and volcanic eruption styles, the carbon concentration in Earth's upper mantle remains highly debated, with estimates varying by more than an order of magnitude. The relationship between carbon and incompatible trace element (e.g., Nb, Ba) concentrations in rare, undegassed mid-ocean ridge basalts and melt inclusions provide primary constraints on upper mantle carbon content. Here we investigate whether the most volatile rich mid-ocean ridge basalts, termed ‘popping rocks’ represent undegassed magmas from the upper mantle and provide insight into upper mantle carbon inventory. We show that fourteen new popping rocks, collected in situ from the Mid-Atlantic Ridge rift valley near 14°N, contain highly variable CO2/Nb and CO2/Ba ratios despite similar mantle sources and extents of melting. We revise the original model for popping rock formation using seafloor observations, high-resolution bathymetry, vesicle size distributions, major and trace element geochemistry, and noble gas geochemistry. Highly variable volatile concentrations despite relatively homogeneous trace element ratios and low 4He/40Ar suggest that bubble accumulation affected these popping rocks. These results provide evidence for heterogeneity in the CO2/Ba ratio of the depleted mantle and indicate that mantle carbon concentrations are lower and less heterogeneous than previously estimated, which influences models for mantle melting and CO2 flux at mid-ocean ridges.

Original languageAmerican English
Pages (from-to)67-75
Number of pages9
JournalEarth and Planetary Science Letters
Volume511
DOIs
StatePublished - 1 Apr 2019

Keywords

  • carbon
  • mantle
  • mid-ocean ridge basalts
  • popping rocks
  • vesicularity
  • volatiles

EGS Disciplines

  • Earth Sciences
  • Geophysics and Seismology

Fingerprint

Dive into the research topics of 'New Constraints on Mantle Carbon from Mid-Atlantic Ridge Popping Rocks'. Together they form a unique fingerprint.

Cite this