TY - JOUR
T1 - NLFFT
T2 - A Novel Fault Tolerance Model Using Artificial Intelligence to Improve Performance in Wireless Sensor Networks
AU - Menaria, Vinod Kumar
AU - Jain, S. C.
AU - Raju, Naga
AU - Kumari, Rajani
AU - Nayyar, Anand
AU - Hosain, Eklas
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2020
Y1 - 2020
N2 - A wireless sensor network (WSN) is a collection of various tiny devices known as sensor nodes, which are also called motes. Due to high-energy consumption, the possibility of hardware, link or node failure, and some malicious attacks, sensor networks are considered error-prone networks. Hence, fault tolerance (FT) in WSN is one of the prominent issues. This article presents a novel FT approach named node-link failure fault tolerance model (NLFFT Model) in WSN, to handle the faults that occur either by link or node failure during data transmission from the sensor to the sink or base station. The NLFFT model consists of an improved quadratic minimum spanning tree (Imp-QMST) approach. This approach helps in finding the alternate link whenever it fails due to various situations and also an improved-handoff (Imp-Handoff) algorithm to support the node failure to the fault tolerance. Improved QMST presents a novel mechanism to find an alternate edge in place of the broken or failed edge in the spanning tree, to improve the fault tolerance in WSN. Imp-Handoff suggests a novel way to find the faulty node owing to less battery power and replaces a defective node by an appropriate neighbor to shift the tasks performed by a faulty node in WSN. Simulation results clearly state that as compared to the basic techniques i.e. Q-MST and Handoff algorithm, the proposed NLFFT model improvises the performance of WSN around by 7%. The results prove that the Imp-QMST gives about 6% improved throughput, 5% less end-to-end delay, and 6% less power consumption than the QMST algorithm. Similarly, Imp-Handoff improves about 4% throughput, 6% less end-to-end delay, and utilizes 7% less power consumption.
AB - A wireless sensor network (WSN) is a collection of various tiny devices known as sensor nodes, which are also called motes. Due to high-energy consumption, the possibility of hardware, link or node failure, and some malicious attacks, sensor networks are considered error-prone networks. Hence, fault tolerance (FT) in WSN is one of the prominent issues. This article presents a novel FT approach named node-link failure fault tolerance model (NLFFT Model) in WSN, to handle the faults that occur either by link or node failure during data transmission from the sensor to the sink or base station. The NLFFT model consists of an improved quadratic minimum spanning tree (Imp-QMST) approach. This approach helps in finding the alternate link whenever it fails due to various situations and also an improved-handoff (Imp-Handoff) algorithm to support the node failure to the fault tolerance. Improved QMST presents a novel mechanism to find an alternate edge in place of the broken or failed edge in the spanning tree, to improve the fault tolerance in WSN. Imp-Handoff suggests a novel way to find the faulty node owing to less battery power and replaces a defective node by an appropriate neighbor to shift the tasks performed by a faulty node in WSN. Simulation results clearly state that as compared to the basic techniques i.e. Q-MST and Handoff algorithm, the proposed NLFFT model improvises the performance of WSN around by 7%. The results prove that the Imp-QMST gives about 6% improved throughput, 5% less end-to-end delay, and 6% less power consumption than the QMST algorithm. Similarly, Imp-Handoff improves about 4% throughput, 6% less end-to-end delay, and utilizes 7% less power consumption.
KW - Fault tolerance
KW - handoff mechanism
KW - MST
KW - Q-MST
KW - swarm intelligence
KW - WSN
UR - http://www.scopus.com/inward/record.url?scp=85090275092&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2020.3015985
DO - 10.1109/ACCESS.2020.3015985
M3 - Article
AN - SCOPUS:85090275092
VL - 8
SP - 149231
EP - 149254
JO - IEEE Access
JF - IEEE Access
M1 - 9165741
ER -