Non-exhaustive Learning Using Gaussian Mixture Generative Adversarial Networks

Jun Zhuang, Mohammad Al Hasan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Supervised learning, while deployed in real-life scenarios, often encounters instances of unknown classes. Conventional algorithms for training a supervised learning model do not provide an option to detect such instances, so they miss-classify such instances with 100% probability. Open Set Recognition (OSR) and Non-Exhaustive Learning (NEL) are potential solutions to overcome this problem. Most existing methods of OSR first classify members of existing classes and then identify instances of new classes. However, many of the existing methods of OSR only makes a binary decision, i.e., they only identify the existence of the unknown class. Hence, such methods cannot distinguish test instances belonging to incremental unseen classes. On the other hand, the majority of NEL methods often make a parametric assumption over the data distribution, which either fail to return good results, due to the reason that real-life complex datasets may not follow a well-known data distribution. In this paper, we propose a new online non-exhaustive learning model, namely, Non-Exhaustive Gaussian Mixture Generative Adversarial Networks (NE-GM-GAN) to address these issues. Our proposed model synthesizes Gaussian mixture based latent representation over a deep generative model, such as GAN, for incremental detection of instances of emerging classes in the test data. Extensive experimental results on several benchmark datasets show that NE-GM-GAN significantly outperforms the state-of-the-art methods in detecting instances of novel classes in streaming data.

Original languageEnglish
Title of host publicationMachine Learning and Knowledge Discovery in Databases. Research Track - European Conference, ECML PKDD 2021, Proceedings
EditorsNuria Oliver, Fernando Pérez-Cruz, Stefan Kramer, Jesse Read, Jose A. Lozano
PublisherSpringer Science and Business Media Deutschland GmbH
Pages3-18
Number of pages16
ISBN (Print)9783030865191
DOIs
StatePublished - 2021
EventEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2021 - Virtual, Online
Duration: 13 Sep 202117 Sep 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12976 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2021
CityVirtual, Online
Period13/09/2117/09/21

Keywords

  • Non-exhaustive learning
  • Open set recognition

Fingerprint

Dive into the research topics of 'Non-exhaustive Learning Using Gaussian Mixture Generative Adversarial Networks'. Together they form a unique fingerprint.

Cite this