TY - GEN
T1 - Nonlinear differential-geometric techniques for control of a series DC motor
AU - Chiasson, John
PY - 1993
Y1 - 1993
N2 - The problem of controlling a Series DC motor using only current measurements is considered. It is shown that both speed and load-torque may be estimated from the current measurements for use in two proposed nonlinear controllers. The two proposed feedback laws are based on feedback linearization and input-output linearization. Further, both the speed/torque estimation scheme and the control schemes are valid in the presence of magnetic saturation in the field circuit and when high-speed field-weakening is employed. The estimation is accomplished by using nonlinear state-space and output-space transformations to construct an observer with linear error-dynamics whose rate of convergence may be arbitrarily specified. (Such an observer could provide reliability to existing systems in the event of a speed sensor failure.) The feedback-linearization controller involves a non-trivial state-space transformation allowing control of the full state trajectory. It is then shown that a simpler input-output linearization controller with stable internal dynamics exists and is explicitly constructed.
AB - The problem of controlling a Series DC motor using only current measurements is considered. It is shown that both speed and load-torque may be estimated from the current measurements for use in two proposed nonlinear controllers. The two proposed feedback laws are based on feedback linearization and input-output linearization. Further, both the speed/torque estimation scheme and the control schemes are valid in the presence of magnetic saturation in the field circuit and when high-speed field-weakening is employed. The estimation is accomplished by using nonlinear state-space and output-space transformations to construct an observer with linear error-dynamics whose rate of convergence may be arbitrarily specified. (Such an observer could provide reliability to existing systems in the event of a speed sensor failure.) The feedback-linearization controller involves a non-trivial state-space transformation allowing control of the full state trajectory. It is then shown that a simpler input-output linearization controller with stable internal dynamics exists and is explicitly constructed.
UR - http://www.scopus.com/inward/record.url?scp=0027804570&partnerID=8YFLogxK
U2 - 10.23919/acc.1993.4792948
DO - 10.23919/acc.1993.4792948
M3 - Conference contribution
AN - SCOPUS:0027804570
SN - 0780308611
SN - 9780780308619
T3 - American Control Conference
SP - 691
EP - 695
BT - American Control Conference
T2 - Proceedings of the 1993 American Control Conference Part 3 (of 3)
Y2 - 2 June 1993 through 4 June 1993
ER -