Optimization of Alnico’s Processing Route to Enhance Magnetic Properties

Omar Betancourt, Mahmood Mamivand

Research output: Contribution to conferencePresentation

Abstract

Growing concerns for carbon emissions and the rising cost of petroleum has increased interest into finding alternatives to fossil fuel–based energy resources. Current sustainability efforts using electric vehicles rely on strong permanent magnets (PM) to work efficiently and rare earth (RE) metals make the best PM. Due to short supply of RE metals, efforts for developing non-RE PM to meet the demand of traction motors is a major focus of scientific and engineering communities. Alnico alloy (Fe, Al, Ni, Co, etc.) is an attractive near-term solution. However, Alnico’s magnetic properties are not as competitive as RE PM. Theoretically, Alnico can produce similar magnetic strength than RE PM, with proper microstructure optimization. In this effort, we will develop a physics-based mesoscale model to gain insight into the manufacturing process of Alnico, including thermal magnetic treatment along with spinodal decomposition, to optimize the processing route to maximize Alnico’s magnetic strength.

Original languageAmerican English
StatePublished - 12 Jul 2019

Fingerprint

Dive into the research topics of 'Optimization of Alnico’s Processing Route to Enhance Magnetic Properties'. Together they form a unique fingerprint.

Cite this