TY - JOUR
T1 - Paradoxical effects of 137Cs irradiation on pharmacological stimulation of reactive oxygen species in hippocampal slices from apoE2 and apoE4 mice
AU - Villasana, Laura E.
AU - Akinyeke, Tunde
AU - Weber, Sydney
AU - Raber, Jacob
N1 - Publisher Copyright:
© Villasana et al.
PY - 2017
Y1 - 2017
N2 - In humans, apoE, which plays a role in repair, is expressed in three isoforms: E2, E3, and E4. E4 is a risk factor for age-related cognitive decline (ACD) and Alzheimer's disease (AD), particularly in women. In contrast, E2 is a protective factor for ACD and AD. E2 and E4 might also differ in their response to cranial 137Cs irradiation, a form of radiation typically used in a clinical setting for the treatment of cancer. This might be mediated by reactive oxygen species (ROS) in an-apoE isoform-dependent fashion. E2 and E4 female mice received sham-irradiation or cranial irradiation at 8 weeks of age and a standard mouse chow or a diet supplemented with the antioxidant alphalipoic acid (ALA) starting at 6 weeks of age. Behavioral and cognitive performance of the mice were assessed 12 weeks later. Subsequently, the generation of ROS in hippocampal slices was analyzed. Compared to sham-irradiated E4 mice, irradiated E4 mice showed enhanced spatial memory in the water maze. This was associated with increased hippocampal PMA-induction of ROS. Similar effects were not seen in E2 mice. Irradiation increased endogenous hippocampal ROS levels in E2 mice while decreasing those in E4 mice. NADPH activity and MnSOD levels were higher in shamirradiated E2 than E4 mice. Irradiation increased NADPH activity and MnSOD levels in hemi brains of E4 mice but not in those of E2 mice. ALA did not affect behavioral and cognitive performance or hippocampal formation of ROS in either genotype. Thus, apoE isoforms modulate the radiation response.
AB - In humans, apoE, which plays a role in repair, is expressed in three isoforms: E2, E3, and E4. E4 is a risk factor for age-related cognitive decline (ACD) and Alzheimer's disease (AD), particularly in women. In contrast, E2 is a protective factor for ACD and AD. E2 and E4 might also differ in their response to cranial 137Cs irradiation, a form of radiation typically used in a clinical setting for the treatment of cancer. This might be mediated by reactive oxygen species (ROS) in an-apoE isoform-dependent fashion. E2 and E4 female mice received sham-irradiation or cranial irradiation at 8 weeks of age and a standard mouse chow or a diet supplemented with the antioxidant alphalipoic acid (ALA) starting at 6 weeks of age. Behavioral and cognitive performance of the mice were assessed 12 weeks later. Subsequently, the generation of ROS in hippocampal slices was analyzed. Compared to sham-irradiated E4 mice, irradiated E4 mice showed enhanced spatial memory in the water maze. This was associated with increased hippocampal PMA-induction of ROS. Similar effects were not seen in E2 mice. Irradiation increased endogenous hippocampal ROS levels in E2 mice while decreasing those in E4 mice. NADPH activity and MnSOD levels were higher in shamirradiated E2 than E4 mice. Irradiation increased NADPH activity and MnSOD levels in hemi brains of E4 mice but not in those of E2 mice. ALA did not affect behavioral and cognitive performance or hippocampal formation of ROS in either genotype. Thus, apoE isoforms modulate the radiation response.
KW - Cognition
KW - DHE
KW - Hippocampus
KW - NADPH
KW - Superoxide
UR - http://www.scopus.com/inward/record.url?scp=85030310142&partnerID=8YFLogxK
U2 - 10.18632/oncotarget.20603
DO - 10.18632/oncotarget.20603
M3 - Article
C2 - 29100334
AN - SCOPUS:85030310142
VL - 8
SP - 76587
EP - 76605
JO - Oncotarget
JF - Oncotarget
IS - 44
ER -