Abstract
A chiral analog of transient absorption spectroscopy, transient circular dichroism (TCD) spectroscopy is an emerging time-resolved method. Both spectroscopic methods can probe the electronic transitions of a sample, and TCD is additionally sensitive to the dynamic aspects of chirality, such as those induced by molecular excitons. Here, we develop a theoretical description of TCD for electronic multi-level models in which the pump pulse is linearly polarized and probe pulse is alternately left- and right-circularly polarized. We derive effective response functions analogous to those often used to describe other four-wave mixing methods and then simulate and analyze TCD spectra for three representative multi-level electronic model systems. We elaborate on the presence and detection of the spectral signatures of electronic coherences.
Original language | English |
---|---|
Article number | 154101 |
Journal | Journal of Chemical Physics |
Volume | 157 |
Issue number | 15 |
DOIs | |
State | Published - 21 Oct 2022 |
Externally published | Yes |