Phase Change in Ge–Se Chalcogenide Glasses and Its Implications on Optical Temperature-Sensing Devices

Al-Amin Ahmed Simon, Bahareh Badamchi, Harish Subbaraman, Yoshifumi Sakaguchi, Maria Mitkova

Research output: Contribution to journalArticlepeer-review

Abstract

Reversible amorphous to crystalline phase transition introduces high contrast in the optical and electrical properties of chalcogenide glasses. This effect can be utilized by a designated temperature sensor based on optical power measurement as a function of temperature for temperature monitoring. For this purpose, crystallization kinetics and crystal structures of Ge–Se binary chalcogenide glasses were studied with Differential Scanning Calorimetry, Raman spectroscopy, and X-ray diffraction spectroscopy. The refractive index as a function of temperature was also measured to correlate the effect of structural rearrangement at the phase transition point with optical properties. Based on these data, the crystallization process is interpreted as being homogeneous for the stoichiometric composition and heterogeneous for either chalcogenide- or germanium-rich compositions. This specifically affects the optical performance of the films as a function of temperature and suggests the application of chalcogen- or germanium-rich compositions for building the sensor.

Original languageAmerican English
JournalJournal of Materials Science: Materials in Electronics
StatePublished - 1 Jul 2020

EGS Disciplines

  • Electrical and Computer Engineering

Fingerprint

Dive into the research topics of 'Phase Change in Ge–Se Chalcogenide Glasses and Its Implications on Optical Temperature-Sensing Devices'. Together they form a unique fingerprint.

Cite this