TY - JOUR
T1 - Revealing causes of a surprising correlation
T2 - snow water equivalent and spatial statistics from Calibrated Enhanced-Resolution Brightness Temperatures (CETB) using interpretable machine learning and SHAP analysis
AU - Boueshagh, Mahboubeh
AU - Ramage, Joan M.
AU - Brodzik, Mary J.
AU - Long, David G.
AU - Hardman, Molly
AU - Marshall, Hans Peter
N1 - Publisher Copyright:
Copyright © 2025 Boueshagh, Ramage, Brodzik, Long, Hardman and Marshall.
PY - 2025
Y1 - 2025
N2 - Seasonal snowpack is a crucial water resource, making accurate Snow Water Equivalent (SWE) estimation essential for water management and environmental assessment. This study introduces a novel approach to Passive Microwave (PMW) SWE estimation, leveraging the strong, unexpected correlation between SWE and the Spatial Standard Deviation (SSD) of PMW Calibrated Enhanced-Resolution Brightness Temperatures (CETB). By integrating spatial statistics, linear correlation, machine learning (Linear Regression, Random Forest, GBoost, and XGBoost), and SHapley Additive exPlanations (SHAP) analysis, this research evaluates CETB SSD as a key feature to improve SWE estimations or other environmental retrievals by investigating environmental drivers of CETB SSD. Analysis at three sites—Monument Creek, AK; Mud Flat, ID; and Jones Pass, CO—reveals site-specific SSD variability, showing correlations of 0.64, 0.82, and 0.72 with SNOTEL SWE, and 0.67, 0.89, and 0.67 with PMW-derived SWE, respectively. Among the sites, Monument Creek exhibits the highest ML model accuracy, with Random Forest and XGBoost achieving test R2 values of 0.89 and RMSEs ranging from 0.37 to 0.39 [K] when predicting CETB SSD. SHAP analysis highlights SWE as the driver of CETB SSD at Monument Creek and Mud Flat, while soil moisture plays a larger role at Jones Pass. In snow-dominated regions with less surface heterogeneity, such as Monument Creek, SSDs can improve SWE estimation by capturing snow spatial variability. In complex environments like Jones Pass, SSDs aid SWE retrievals by accounting for factors such as soil moisture that impact snowpack dynamics. PMW SSDs can enhance remote sensing capabilities for snow and environmental research across diverse environments, benefiting hydrological modeling and water resource management.
AB - Seasonal snowpack is a crucial water resource, making accurate Snow Water Equivalent (SWE) estimation essential for water management and environmental assessment. This study introduces a novel approach to Passive Microwave (PMW) SWE estimation, leveraging the strong, unexpected correlation between SWE and the Spatial Standard Deviation (SSD) of PMW Calibrated Enhanced-Resolution Brightness Temperatures (CETB). By integrating spatial statistics, linear correlation, machine learning (Linear Regression, Random Forest, GBoost, and XGBoost), and SHapley Additive exPlanations (SHAP) analysis, this research evaluates CETB SSD as a key feature to improve SWE estimations or other environmental retrievals by investigating environmental drivers of CETB SSD. Analysis at three sites—Monument Creek, AK; Mud Flat, ID; and Jones Pass, CO—reveals site-specific SSD variability, showing correlations of 0.64, 0.82, and 0.72 with SNOTEL SWE, and 0.67, 0.89, and 0.67 with PMW-derived SWE, respectively. Among the sites, Monument Creek exhibits the highest ML model accuracy, with Random Forest and XGBoost achieving test R2 values of 0.89 and RMSEs ranging from 0.37 to 0.39 [K] when predicting CETB SSD. SHAP analysis highlights SWE as the driver of CETB SSD at Monument Creek and Mud Flat, while soil moisture plays a larger role at Jones Pass. In snow-dominated regions with less surface heterogeneity, such as Monument Creek, SSDs can improve SWE estimation by capturing snow spatial variability. In complex environments like Jones Pass, SSDs aid SWE retrievals by accounting for factors such as soil moisture that impact snowpack dynamics. PMW SSDs can enhance remote sensing capabilities for snow and environmental research across diverse environments, benefiting hydrological modeling and water resource management.
KW - SHapley additive exPlanation (SHAP)
KW - enhanced-resolution data
KW - machine learning
KW - passive microwave remote sensing
KW - snow water equivalent (SWE)
KW - soil moisture
KW - spatial standard deviation
KW - surface variability
UR - https://www.scopus.com/pages/publications/105001524652
U2 - 10.3389/frsen.2025.1554084
DO - 10.3389/frsen.2025.1554084
M3 - Article
AN - SCOPUS:105001524652
SN - 2673-6187
VL - 6
JO - Frontiers in Remote Sensing
JF - Frontiers in Remote Sensing
M1 - 1554084
ER -