TY - GEN
T1 - RIBS
T2 - 2019 IEEE International Conference on Big Data, Big Data 2019
AU - Joaristi, Mikel
AU - Putnam, Arthur
AU - Cuzzocrea, Alfredo
AU - Serra, Edoardo
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/12
Y1 - 2019/12
N2 - Nowadays, there has been an increment in the use of machine learning methods for cyber-security applications. These methods can be prone to generalization, especially in a binary attack classification setting, where the objective is to differentiate between benign vs. malicious behavior. This generalization creates risky security blind-spot weaknesses that make the system vulnerable. Current attackers are well aware of these blind-spots and as a counter-strategy, they exploit such vulnerabilities to bypass security measures and achieve their nefarious objectives. In this work, we propose a methodology to mitigate the problem, RIsky Blind-Spot (RIBS), by making the classification more robust. Our proposed approach creates a generator model that can learn the real characteristics of the data, and consequently, sample real examples targeting the blind-spots of a classifier. We validate our methodology in the context of power grids, where we show how this framework can improve the detection of unknown malicious behavior. Our approach provides an increment of 10% in terms of accuracy and detected attacks when compared to the baseline method.
AB - Nowadays, there has been an increment in the use of machine learning methods for cyber-security applications. These methods can be prone to generalization, especially in a binary attack classification setting, where the objective is to differentiate between benign vs. malicious behavior. This generalization creates risky security blind-spot weaknesses that make the system vulnerable. Current attackers are well aware of these blind-spots and as a counter-strategy, they exploit such vulnerabilities to bypass security measures and achieve their nefarious objectives. In this work, we propose a methodology to mitigate the problem, RIsky Blind-Spot (RIBS), by making the classification more robust. Our proposed approach creates a generator model that can learn the real characteristics of the data, and consequently, sample real examples targeting the blind-spots of a classifier. We validate our methodology in the context of power grids, where we show how this framework can improve the detection of unknown malicious behavior. Our approach provides an increment of 10% in terms of accuracy and detected attacks when compared to the baseline method.
UR - http://www.scopus.com/inward/record.url?scp=85081312795&partnerID=8YFLogxK
U2 - 10.1109/BigData47090.2019.9006356
DO - 10.1109/BigData47090.2019.9006356
M3 - Conference contribution
AN - SCOPUS:85081312795
T3 - Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019
SP - 5773
EP - 5779
BT - Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019
A2 - Baru, Chaitanya
A2 - Huan, Jun
A2 - Khan, Latifur
A2 - Hu, Xiaohua Tony
A2 - Ak, Ronay
A2 - Tian, Yuanyuan
A2 - Barga, Roger
A2 - Zaniolo, Carlo
A2 - Lee, Kisung
A2 - Ye, Yanfang Fanny
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 9 December 2019 through 12 December 2019
ER -