Routine Million-Particle Simulations of Epoxy Curing with Dissipative Particle Dynamics

Stephen Thomas, Monet Alberts, Michael M. Henry, Carla E. Estridge, Eric Jankowski

Research output: Contribution to journalArticlepeer-review

6 Downloads (Pure)

Abstract

Mesoscale simulation techniques have helped to bridge the length scales and time scales needed to predict the microstructures of cured epoxies, but gaps in computational cost and experimental relevance have limited their impact. In this work, we develop an open-source plugin epoxpy for HOOMD-Blue that enables epoxy crosslinking simulations of millions of particles to be routinely performed on a single modern graphics card. We demonstrate the first implementation of custom temperature-time curing profiles with dissipative particle dynamics and show that reaction kinetics depend sensitively on the stochastic bonding rates. We provide guidelines for modeling first-order reaction dynamics in a classic epoxy/hardener/toughener system and show structural sensitivity to the temperature-time profile during cure. We conclude with a discussion of how these efficient large-scale simulations can be used to evaluate ensembles of epoxy processing protocols to quantify the sensitivity of microstructure on processing.

Original languageAmerican English
JournalJournal of Theoretical and Computational Chemistry
StatePublished - 1 May 2018

Keywords

  • DPD
  • epoxy
  • high-throughput
  • polymer

EGS Disciplines

  • Materials Science and Engineering

Fingerprint

Dive into the research topics of 'Routine Million-Particle Simulations of Epoxy Curing with Dissipative Particle Dynamics'. Together they form a unique fingerprint.

Cite this