Shear, Consolidation Characteristics and Carbon Footprint Analysis of Clayey Soil Blended with Calcium Lignosulphonate and Granite Sand for Earthen Dam Application

Bonagiri Varsha, Arif Ali Baig Moghal, Ateekh Ur Rehman, Bhaskar C.S. Chittoori

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Soil is a composite material of great interest to civil engineers. When the quality of such composite soils is poor, ground improvement techniques must be adopted to withstand the design load of superstructure. Existing soil stabilizers include lime and cement; however, their environmental safety and sustainable use during stabilization have been receiving increasing attention in recent years. This study investigated the use of granite sand (GS) and calcium lignosulphonate (CLS) as sustainable stabilizers that could be blended with clayey soils. The considered dosages of GS were 30%, 40% and 50%, and those of the CLS were 0.25%, 0.5%, 1% and 1.5%. Direct shear and consolidation tests were performed on the GS–CLS blended soil samples that were cured for 7 and 14 days. The amended stabilizers improved the shear parameters and consolidation characteristics at an optimum dosage of 30% GS and 0.5% CLS. Maximum improvements of 84% and 163% were observed in the cohesion and angles of internal friction, respectively. A significant change was also observed in the consolidation characteristics, making them practically applicable. The soil hydraulic conductivity was reduced by 14%, and the coefficient of consolidation increased by 203% for 30% GS and 05% CLS. Carbon footprint analyses were performed on the soil composition that would be best-suited for a typical homogenous earthen dam section. The results showed that the use of GS and CLS together reduced the carbon emissions by 6.57 and 7.7 times, compared to traditional stabilizers, such as cement and lime.

Original languageEnglish
Article number6117
JournalSustainability (Switzerland)
Volume15
Issue number7
DOIs
StatePublished - Apr 2023

Keywords

  • calcium lignosulphonate
  • carbon footprint analysis
  • clay
  • consolidation
  • direct shear test
  • granite sand

Fingerprint

Dive into the research topics of 'Shear, Consolidation Characteristics and Carbon Footprint Analysis of Clayey Soil Blended with Calcium Lignosulphonate and Granite Sand for Earthen Dam Application'. Together they form a unique fingerprint.

Cite this