Abstract
The calcium ion plays a unique role as a messenger and a cofactor in cardiac contraction. This role relies on the strict control by the cell of Ca homeostasis, the components of which are described in this review. During the few last years, tools for the measurement of free intracellular Ca in living cells have been developed which include: probes (aequorin, Fura 2, Indo 1, Fluo 3...), tools for the loading of the cells (microinjection and AM-probes) and systems to analyze the signal (photometers, microfluorimeters, confocal microscopy). Those tools allowed the analysis of calcium signal in cardiomyocytes. In the cardiac cell, activation of a Ca influx through L type Ca channels is usually considered as the pathway initializing Ca mobilization and leading to contraction. It has now been demonstrated that this pathway is activated by beta 1-adrenergic agonists via cyclic AMP. However, amplification of contraction may involve other targets. Thus, the positive inotropic effect of beta 2-adrenergic agonists is also associated with a rise in cytosolic Ca but is not linked to cyclic AMP increase. The alpha 1-adrenergic pathway involves a sensitization of myofilaments for Ca, and increases contraction without an increase in cytosolic Ca. Finally, the positive inotropic effect of glucagon combines the cyclic AMP pathway with a cyclic AMP independent pathway triggered by the metabolite mini-glucagon.
Translated title of the contribution | Calcium signal and contraction |
---|---|
Original language | French |
Pages (from-to) | 243-253 |
Number of pages | 11 |
Journal | Comptes rendus des séances de la Société de biologie et de ses filiales |
Volume | 190 |
Issue number | 2-3 |
State | Published - 1996 |