Signatures of Vibrational and Electronic Quantum Beats in Femtosecond Coherence Spectra

Paul C. Arpin, Daniel B. Turner

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Femtosecond laser pulses can produce oscillatory signals in transient-absorption spectroscopy measurements. The quantum beats are often studied using femtosecond coherence spectra (FCS), the Fourier domain amplitude, and phase profiles at individual oscillation frequencies. In principle, one can identify the mechanism that gives rise to each quantum-beat signal by comparing its measured FCS to those arising from microscopic models. To date, however, most measured FCS deviate from the ubiquitous harmonic oscillator model. Here, we expand the inventory of models to which the measured spectra can be compared. We develop quantum-mechanical models of the fundamental, overtone, and combination-band FCS arising from harmonic potentials, the FCS of anharmonic potentials, and the FCS of a purely electronic dimer. This work solidifies the use of FCS for identifying electronic coherences that can arise in measurements of molecular aggregates including photosynthetic proteins. Furthermore, future studies can use the derived expressions to fit the measured FCS and thereby extract microscopic parameters of molecular potential-energy surfaces.

Original languageEnglish
Pages (from-to)2425-2435
Number of pages11
JournalJournal of Physical Chemistry A
Volume125
Issue number12
DOIs
StatePublished - 1 Apr 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Signatures of Vibrational and Electronic Quantum Beats in Femtosecond Coherence Spectra'. Together they form a unique fingerprint.

Cite this