TY - JOUR
T1 - Spatiotemporal Prediction of Microstructure Evolution with Predictive Recurrent Neural Network
AU - Kazemzadeh Farizhandi, Amir Abbas
AU - Mamivand, Mahmood
N1 - Kazemzadeh Farizhandi, Amir Abbas and Mamivand, Mahmood. (2023). "Spatiotemporal Prediction of Microstructure Evolution with Predictive Recurrent Neural Network". Computational Materials Science, 223, 112110. https://doi.org/10.1016/j.commatsci.2023.112110
PY - 2023/4/25
Y1 - 2023/4/25
N2 - Prediction of microstructure evolution during material processing is essential to control the material properties. Simulation tools for microstructure evolution prediction based on physical concepts are computationally expensive and time-consuming. Therefore, they are not practical when either there is an urgent need for microstructure morphology during the process or there is a need to generate big microstructure datasets. Essentially, microstructure evolution prediction is a spatiotemporal sequence prediction problem, where the prediction of material microstructure is difficult due to different process histories and chemistry. We propose a Predictive Recurrent Neural Network (PredRNN) model for the microstructure prediction, which extends the inner-layer transition function of memory states in LSTMs to spatiotemporal memory flow. As a case study, we used a dataset from spinodal decomposition simulation of FeCrCo alloy created by the phase-field method for training and predicting future microstructures by previous observations. The results show that the trained network predicts quantitatively accurate microstructure morphologies while it is several orders of magnitude faster than the phase field method.
AB - Prediction of microstructure evolution during material processing is essential to control the material properties. Simulation tools for microstructure evolution prediction based on physical concepts are computationally expensive and time-consuming. Therefore, they are not practical when either there is an urgent need for microstructure morphology during the process or there is a need to generate big microstructure datasets. Essentially, microstructure evolution prediction is a spatiotemporal sequence prediction problem, where the prediction of material microstructure is difficult due to different process histories and chemistry. We propose a Predictive Recurrent Neural Network (PredRNN) model for the microstructure prediction, which extends the inner-layer transition function of memory states in LSTMs to spatiotemporal memory flow. As a case study, we used a dataset from spinodal decomposition simulation of FeCrCo alloy created by the phase-field method for training and predicting future microstructures by previous observations. The results show that the trained network predicts quantitatively accurate microstructure morphologies while it is several orders of magnitude faster than the phase field method.
KW - Predictive Recurrent Neural Network (PredRNN)
KW - deep learning
KW - material microstructure evolution
KW - phase field method
KW - spatiotemporal prediction
UR - https://scholarworks.boisestate.edu/mecheng_facpubs/160
M3 - Article
JO - Computational Materials Science
JF - Computational Materials Science
ER -