TY - JOUR
T1 - Structures of 5-methylthioribose kinase reveal substrate specificity and unusual mode of nucleotide binding
AU - Ku, Shao Yang
AU - Yip, Patrick
AU - Cornell, Kenneth A.
AU - Riscoe, Michael K.
AU - Behr, Jean Bernard
AU - Guillerm, Georges
AU - Howell, P. Lynne
PY - 2007/7/27
Y1 - 2007/7/27
N2 - The methionine salvage pathway is ubiquitous in all organisms, but metabolic variations exist between bacteria and mammals. 5-Methylthioribose (MTR) kinase is a key enzyme in methionine salvage in bacteria and the absence of a mammalian homolog suggests that it is a good target for the design of novel antibiotics. The structures of the apo-form of Bacillus subtilis MTR kinase, as well as its ADP, ADP-PO4, AMPPCP, and AMPPCP-MTR complexes have been determined. MTR kinase has a bilobal eukaryotic protein kinase fold but exhibits a number of unique features. The protein lacks the DFG motif typically found at the beginning of the activation loop and instead coordinates magnesium via a DXE motif (Asp250-Glu252). In addition, the glycine-rich loop of the protein, analogous to the "Gly triad" in protein kinases, does not interact extensively with the nucleotide. The MTR substrate-binding site consists of Asp233 of the catalytic HGD motif, a novel twin arginine motif (Arg340/Arg341), and a semi-conserved W-loop, which appears to regulate MTR binding specificity. No lobe closure is observed for MTR kinase upon substrate binding. This is probably because the enzyme lacks the lobe closure/inducing interactions between the C-lobe of the protein and the ribosyl moiety of the nucleotide that are typically responsible for lobe closure in protein kinases. The current structures suggest that MTR kinase has a dissociative mechanism.
AB - The methionine salvage pathway is ubiquitous in all organisms, but metabolic variations exist between bacteria and mammals. 5-Methylthioribose (MTR) kinase is a key enzyme in methionine salvage in bacteria and the absence of a mammalian homolog suggests that it is a good target for the design of novel antibiotics. The structures of the apo-form of Bacillus subtilis MTR kinase, as well as its ADP, ADP-PO4, AMPPCP, and AMPPCP-MTR complexes have been determined. MTR kinase has a bilobal eukaryotic protein kinase fold but exhibits a number of unique features. The protein lacks the DFG motif typically found at the beginning of the activation loop and instead coordinates magnesium via a DXE motif (Asp250-Glu252). In addition, the glycine-rich loop of the protein, analogous to the "Gly triad" in protein kinases, does not interact extensively with the nucleotide. The MTR substrate-binding site consists of Asp233 of the catalytic HGD motif, a novel twin arginine motif (Arg340/Arg341), and a semi-conserved W-loop, which appears to regulate MTR binding specificity. No lobe closure is observed for MTR kinase upon substrate binding. This is probably because the enzyme lacks the lobe closure/inducing interactions between the C-lobe of the protein and the ribosyl moiety of the nucleotide that are typically responsible for lobe closure in protein kinases. The current structures suggest that MTR kinase has a dissociative mechanism.
UR - http://www.scopus.com/inward/record.url?scp=34547586984&partnerID=8YFLogxK
U2 - 10.1074/jbc.M611045200
DO - 10.1074/jbc.M611045200
M3 - Article
C2 - 17522047
AN - SCOPUS:34547586984
SN - 0021-9258
VL - 282
SP - 22195
EP - 22206
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 30
ER -