TY - GEN
T1 - Supporting NASA SnowEx remote sensing strategies and requirements for L-band interferometric snow depth and snow water equivalent estimation
AU - Deeb, Elias J.
AU - Marshall, Hans Peter
AU - Forster, Richard R.
AU - Jones, Cathleen E.
AU - Hiemstra, Christopher A.
AU - Siqueira, Paul R.
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - The objectives of this research are to (1) address remote sensing strategies and requirements for estimating snow depth and snow water equivalent (SWE) using existing L-Band interferometric data sets in coordination with field-based observations and modeling frameworks and, with this information, (2) inform the Next Generation Cold Land Processes Experiment (SnowEx) toward articulating the appropriate science and research questions for a single motivating science plan. As proposed, SnowEx is a multi-year airborne snow campaign with a primary goal of exploring multimodal sensor observations in coordination with field campaigns to inform the next generation snow remote sensing satellite platform. Based on limitations of satellite-based optical and LiDAR instruments operating in regions of the globe with consistent cloud-cover, the fact that many snow-dominated regions are at more northerly latitudes (limited solar illumination in the middle of winter), and these snow-dominated regions often experience periods of prolonged cloud cover (due to synoptic precipitation events), a microwave remote sensing platform may be the most viable path to space for a dedicated snow remote sensing mission. Specifically, L-Band radar interferometry has shown some unique promise with an archive of historical and contemporary satellite collections from JAXA's PALSAR-1 and PALSAR-2 instruments, respectively. Moreover, with the expected NISAR (NASA-ISRO Synthetic Aperture Radar) mission launch in 2020 and the unprecedented availability of dedicated global interferometric L-Band products every 12-days, as well as what is in essence a NISAR airborne simulator in JPL's UAVSAR platform, the L-Band interferometric approach to estimating snow depth and snow water equivalent (SWE) requires further investigation within the context of in-situ observations and modeling frameworks.
AB - The objectives of this research are to (1) address remote sensing strategies and requirements for estimating snow depth and snow water equivalent (SWE) using existing L-Band interferometric data sets in coordination with field-based observations and modeling frameworks and, with this information, (2) inform the Next Generation Cold Land Processes Experiment (SnowEx) toward articulating the appropriate science and research questions for a single motivating science plan. As proposed, SnowEx is a multi-year airborne snow campaign with a primary goal of exploring multimodal sensor observations in coordination with field campaigns to inform the next generation snow remote sensing satellite platform. Based on limitations of satellite-based optical and LiDAR instruments operating in regions of the globe with consistent cloud-cover, the fact that many snow-dominated regions are at more northerly latitudes (limited solar illumination in the middle of winter), and these snow-dominated regions often experience periods of prolonged cloud cover (due to synoptic precipitation events), a microwave remote sensing platform may be the most viable path to space for a dedicated snow remote sensing mission. Specifically, L-Band radar interferometry has shown some unique promise with an archive of historical and contemporary satellite collections from JAXA's PALSAR-1 and PALSAR-2 instruments, respectively. Moreover, with the expected NISAR (NASA-ISRO Synthetic Aperture Radar) mission launch in 2020 and the unprecedented availability of dedicated global interferometric L-Band products every 12-days, as well as what is in essence a NISAR airborne simulator in JPL's UAVSAR platform, the L-Band interferometric approach to estimating snow depth and snow water equivalent (SWE) requires further investigation within the context of in-situ observations and modeling frameworks.
KW - differential interferometry
KW - snow
KW - synthetic aperture radar (SAR)
KW - water resources
UR - http://www.scopus.com/inward/record.url?scp=85041835458&partnerID=8YFLogxK
U2 - 10.1109/IGARSS.2017.8127224
DO - 10.1109/IGARSS.2017.8127224
M3 - Conference contribution
AN - SCOPUS:85041835458
T3 - International Geoscience and Remote Sensing Symposium (IGARSS)
SP - 1395
EP - 1396
BT - 2017 IEEE International Geoscience and Remote Sensing Symposium
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 37th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2017
Y2 - 23 July 2017 through 28 July 2017
ER -