Tailored nanoscale interface in a hierarchical carbon nanotube supported MoS2@MoO2-C electrode toward high performance sodium ion storage

Chunrong Ma, Zhixin Xu, Jiali Jiang, Zi Feng Ma, Tristan Olsen, Hui Xiong, Shuguang Wang, Xian Zheng Yuan

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Tailoring heterointerfaces at atomic and molecular levels in electrode materials for superior structural stability and enhanced power/energy densities is desired yet still challenging for achieving ultrafast and stable Na-ion batteries. Herein, an MoS2/MoO2heterointerface is designed and created, in which ultrafine MoO2nanocrystals are tightly anchored on ultrathin MoS2nanosheets, with the assistance of an N-doped carbon protecting layer, on flexible carbon nanotubes. The electrode exhibits a high specific capacity of ∼700 mA h g−1at 0.2 A g−1and an ultra-long cycling stability over 6000 cycles at 5 A g−1. Moreover, an excellent rate capability of ∼375 mA h g−1at 10 A g−1is retained. As evidenced by both experiments and density functional theory (DFT) calculations, the heterointerface could not only introduce an electric field to reduce the charge transport barrier, but also provide extra active sites to adsorb Na+. Meanwhile, within the designed nanoarchitecture, the MoO2nanocrystals can effectively reduce the aggregation of MoS2during charge/discharge processes, and adsorb polysulfide to improve the reversibility. This work provides a fundamental understanding of engineering heterointerfaces at the atomic level for enhanced Na+storage and transport, which can be extended to other functional electrode materials.

Original languageEnglish
Pages (from-to)11011-11018
Number of pages8
JournalJournal of Materials Chemistry A
Volume8
Issue number21
DOIs
StatePublished - 7 Jun 2020

Fingerprint

Dive into the research topics of 'Tailored nanoscale interface in a hierarchical carbon nanotube supported MoS2@MoO2-C electrode toward high performance sodium ion storage'. Together they form a unique fingerprint.

Cite this