TY - JOUR
T1 - Tailored nanoscale interface in a hierarchical carbon nanotube supported MoS2@MoO2-C electrode toward high performance sodium ion storage
AU - Ma, Chunrong
AU - Xu, Zhixin
AU - Jiang, Jiali
AU - Ma, Zi Feng
AU - Olsen, Tristan
AU - Xiong, Hui
AU - Wang, Shuguang
AU - Yuan, Xian Zheng
N1 - Publisher Copyright:
© The Royal Society of Chemistry 2020.
PY - 2020/6/7
Y1 - 2020/6/7
N2 - Tailoring heterointerfaces at atomic and molecular levels in electrode materials for superior structural stability and enhanced power/energy densities is desired yet still challenging for achieving ultrafast and stable Na-ion batteries. Herein, an MoS2/MoO2heterointerface is designed and created, in which ultrafine MoO2nanocrystals are tightly anchored on ultrathin MoS2nanosheets, with the assistance of an N-doped carbon protecting layer, on flexible carbon nanotubes. The electrode exhibits a high specific capacity of ∼700 mA h g−1at 0.2 A g−1and an ultra-long cycling stability over 6000 cycles at 5 A g−1. Moreover, an excellent rate capability of ∼375 mA h g−1at 10 A g−1is retained. As evidenced by both experiments and density functional theory (DFT) calculations, the heterointerface could not only introduce an electric field to reduce the charge transport barrier, but also provide extra active sites to adsorb Na+. Meanwhile, within the designed nanoarchitecture, the MoO2nanocrystals can effectively reduce the aggregation of MoS2during charge/discharge processes, and adsorb polysulfide to improve the reversibility. This work provides a fundamental understanding of engineering heterointerfaces at the atomic level for enhanced Na+storage and transport, which can be extended to other functional electrode materials.
AB - Tailoring heterointerfaces at atomic and molecular levels in electrode materials for superior structural stability and enhanced power/energy densities is desired yet still challenging for achieving ultrafast and stable Na-ion batteries. Herein, an MoS2/MoO2heterointerface is designed and created, in which ultrafine MoO2nanocrystals are tightly anchored on ultrathin MoS2nanosheets, with the assistance of an N-doped carbon protecting layer, on flexible carbon nanotubes. The electrode exhibits a high specific capacity of ∼700 mA h g−1at 0.2 A g−1and an ultra-long cycling stability over 6000 cycles at 5 A g−1. Moreover, an excellent rate capability of ∼375 mA h g−1at 10 A g−1is retained. As evidenced by both experiments and density functional theory (DFT) calculations, the heterointerface could not only introduce an electric field to reduce the charge transport barrier, but also provide extra active sites to adsorb Na+. Meanwhile, within the designed nanoarchitecture, the MoO2nanocrystals can effectively reduce the aggregation of MoS2during charge/discharge processes, and adsorb polysulfide to improve the reversibility. This work provides a fundamental understanding of engineering heterointerfaces at the atomic level for enhanced Na+storage and transport, which can be extended to other functional electrode materials.
UR - http://www.scopus.com/inward/record.url?scp=85085953238&partnerID=8YFLogxK
U2 - 10.1039/d0ta03390a
DO - 10.1039/d0ta03390a
M3 - Article
AN - SCOPUS:85085953238
SN - 2050-7488
VL - 8
SP - 11011
EP - 11018
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 21
ER -