The influence of nanoparticle type on the viscosity of nanoenhanced energy storage materials

Kieran Hess, Amy S. Fleischer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The use of nanoparticles to improve the thermal properties of low thermal conductivity phase change materials is of significant interest. However, the addition of nanoparticles to a base fluid is known to result in an increase in viscosity. An increase in viscosity can suppress convective currents, reducing overall heat transfer thus it necessary to quantify the impact of nanoparticle addition on the viscosity of a PCM. In this work nanoparticle enhanced phase change mateirals are synthesized using paraffin and three different types of nanoparticles: Exfoliated graphite nanoplatelets (xGNP), multiwalled carbon nanotubes (MWCNT) and herringbone graphite nanofibers (HGNF). The particles are loaded at rates between 0.0024wt% to 0.1wt%. The viscosity is analyzed at temperatures between 60 and 100°C. The influence of temperature, nanoparticle type and nanoparticle loading level on viscosity are presented and discussed. The results show that for xGNP and HGNF within the operating condition studied here that there is no impact of the nanoparticle addition on the viscosity of the base material. However, the addition of MWCNT is found to increase the viscosity of the base fluid with the impact increasing with loading level.

Original languageEnglish
Title of host publicationThermal Management
ISBN (Electronic)9780791856888
DOIs
StatePublished - 2015
Externally publishedYes
EventASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2015, collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels - San Francisco, United States
Duration: 6 Jul 20159 Jul 2015

Publication series

NameASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2015, collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
Volume1

Conference

ConferenceASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, InterPACK 2015, collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
Country/TerritoryUnited States
CitySan Francisco
Period6/07/159/07/15

Fingerprint

Dive into the research topics of 'The influence of nanoparticle type on the viscosity of nanoenhanced energy storage materials'. Together they form a unique fingerprint.

Cite this