TY - JOUR
T1 - The Yang-Mills measure in the Kauffman bracket skein module
AU - Bullock, Doug
AU - Frohman, Charles
AU - Kania-Bartoszynska, Joanna
PY - 2003
Y1 - 2003
N2 - For each closed, orientable surface Σg, we construct a local, diffeomorphism invariant trace on the Kauffman bracket skein module Kt(Σg × I). The trace is defined when |t| is neither 0 nor 1, and at certain roots of unity. At t = -1, the trace is integration against the symplectic measure on the SU(2) character variety of the fundamental group of Σg.
AB - For each closed, orientable surface Σg, we construct a local, diffeomorphism invariant trace on the Kauffman bracket skein module Kt(Σg × I). The trace is defined when |t| is neither 0 nor 1, and at certain roots of unity. At t = -1, the trace is integration against the symplectic measure on the SU(2) character variety of the fundamental group of Σg.
KW - Kauffman bracket
KW - Quantum invariant
KW - Skein
KW - Symplectic measure
KW - Trace
UR - http://www.scopus.com/inward/record.url?scp=0037251450&partnerID=8YFLogxK
U2 - 10.1007/s000140300000
DO - 10.1007/s000140300000
M3 - Article
AN - SCOPUS:0037251450
SN - 0010-2571
VL - 78
SP - 1
EP - 17
JO - Commentarii Mathematici Helvetici
JF - Commentarii Mathematici Helvetici
IS - 1
ER -