TY - JOUR
T1 - Time of night and moonlight structure vertical space use by insectivorous bats in a Neotropical rainforest
T2 - An acoustic monitoring study
AU - Gomes, Dylan G.E.
AU - Appel, Giulliana
AU - Barber, Jesse R.
N1 - Publisher Copyright:
Copyright 2020 Gomes et al.
PY - 2020/12/18
Y1 - 2020/12/18
N2 - Background: Previous research has shown diverse vertical space use by various taxa, highlighting the importance of forest vertical structure. Yet, we know little about vertical space use of tropical forests, and we often fail to explore how this three-dimensional space use changes over time. Methods: Here we use canopy tower systems in French Guiana and passive acoustic monitoring to measure Neotropical bat activity above and below the forest canopy throughout nine nights. We use a Bayesian generalized linear mixed effect model and kernel density estimates to demonstrate patterns in space-use over time. Results:We found that different bats use both canopy and understory space differently and that these patterns change throughout the night. Overall, bats were more active above the canopy (including Cormura brevirostris, Molossus molossus, Peropteryx kappleri and Peropteryx macrotis), but multiple species or acoustic complexes (when species identification was impossible) were more active in the understory (such as Centronycteris maximiliani, Myotis riparius, Pteronotus alitonus and Pteronotus rubiginosus). We also found that most bats showed temporally-changing preferences in hourly activity. Some species were less active (e.g., P. kappleri and P. macrotis), whereas others were more active (Pteronotus gymnonotus, C. brevirostris, and M. molossus) on nights with higher moon illuminance. Discussion: Here we show that Neotropical bats use habitat above the forest canopy and within the forest understory differently throughout the night. While bats generally were more active above the forest canopy, we show that individual groups of bats use space differently over the course of a night, and some prefer the understory. This work highlights the need to consider diel cycles in studies of space use, as animals use different habitats during different periods of the day.
AB - Background: Previous research has shown diverse vertical space use by various taxa, highlighting the importance of forest vertical structure. Yet, we know little about vertical space use of tropical forests, and we often fail to explore how this three-dimensional space use changes over time. Methods: Here we use canopy tower systems in French Guiana and passive acoustic monitoring to measure Neotropical bat activity above and below the forest canopy throughout nine nights. We use a Bayesian generalized linear mixed effect model and kernel density estimates to demonstrate patterns in space-use over time. Results:We found that different bats use both canopy and understory space differently and that these patterns change throughout the night. Overall, bats were more active above the canopy (including Cormura brevirostris, Molossus molossus, Peropteryx kappleri and Peropteryx macrotis), but multiple species or acoustic complexes (when species identification was impossible) were more active in the understory (such as Centronycteris maximiliani, Myotis riparius, Pteronotus alitonus and Pteronotus rubiginosus). We also found that most bats showed temporally-changing preferences in hourly activity. Some species were less active (e.g., P. kappleri and P. macrotis), whereas others were more active (Pteronotus gymnonotus, C. brevirostris, and M. molossus) on nights with higher moon illuminance. Discussion: Here we show that Neotropical bats use habitat above the forest canopy and within the forest understory differently throughout the night. While bats generally were more active above the forest canopy, we show that individual groups of bats use space differently over the course of a night, and some prefer the understory. This work highlights the need to consider diel cycles in studies of space use, as animals use different habitats during different periods of the day.
KW - Bat activity
KW - Chiroptera
KW - Daily cycle
KW - Diel
KW - Moon
KW - Neotropics
KW - Passive acoustic monitoring
KW - Rainforest
KW - Temporal patterns
UR - http://www.scopus.com/inward/record.url?scp=85098200140&partnerID=8YFLogxK
U2 - 10.7717/peerj.10591
DO - 10.7717/peerj.10591
M3 - Article
AN - SCOPUS:85098200140
VL - 8
JO - PeerJ
JF - PeerJ
M1 - e10591
ER -